Unlocking the Power of Compound Wildcard Indexes in MongoDB 7.0



MongoDB 7.0 introduces significant enhancements to wildcard indexing capabilities, with compound wildcard indexes representing one of the most powerful features for optimizing queries across dynamic schemas. This comprehensive guide explores how to leverage these indexes for maximum performance gains.

Understanding Compound Wildcard Indexes

Compound wildcard indexes combine the flexibility of wildcard indexes with the performance benefits of compound indexing. Unlike traditional wildcard indexes that operate on a single field pattern, compound wildcard indexes allow you to create indexes that span multiple fields, including both specific fields and wildcard patterns.

Key Benefits

  • Enhanced Query Performance: Optimize queries that filter on both specific and dynamic fields
  • Schema Flexibility: Support evolving document structures without index maintenance
  • Reduced Index Overhead: Single index covers multiple query patterns
  • Improved Aggregation Pipeline Performance: Accelerate complex analytical queries

Creating Compound Wildcard Indexes

// Basic compound wildcard index
db.products.createIndex({
  "category": 1,
  "attributes.$**": 1
})

// Multi-field compound wildcard
db.analytics.createIndex({
  "timestamp": 1,
  "userId": 1,
  "metadata.$**": 1
})

// Mixed ascending/descending with wildcards
db.events.createIndex({
  "eventType": 1,
  "timestamp": -1,
  "properties.$**": 1
})

Advanced Configuration Options

Wildcard Projection

Control which fields are included in the wildcard portion:

db.collection.createIndex(
  {
    "status": 1,
    "data.$**": 1
  },
  {
    "wildcardProjection": {
      "data.sensitive": 0,
      "data.internal": 0
    }
  }
)

Partial Indexes with Wildcards

Combine compound wildcards with partial index filters:

db.orders.createIndex(
  {
    "customerId": 1,
    "items.$**": 1
  },
  {
    "partialFilterExpression": {
      "status": { "$in": ["pending", "processing"] }
    }
  }
)

Query Optimization Patterns

Multi-Criteria Filtering

// Optimized query using compound wildcard index
db.products.find({
  "category": "electronics",
  "attributes.brand": "Samsung",
  "attributes.color": "black"
})

// Index: { "category": 1, "attributes.$**": 1 }

Time-Series Data Optimization

// Efficient time-based queries with dynamic metadata
db.metrics.find({
  "timestamp": { "$gte": ISODate("2025-01-01") },
  "source": "api",
  "tags.environment": "production"
})

// Index: { "timestamp": 1, "source": 1, "tags.$**": 1 }

Aggregation Pipeline Enhancement

db.analytics.aggregate([
  {
    "$match": {
      "eventType": "user_action",
      "properties.page": "/checkout"
    }
  },
  {
    "$group": {
      "_id": "$properties.action",
      "count": { "$sum": 1 }
    }
  }
])

// Index: { "eventType": 1, "properties.$**": 1 }

Performance Considerations

Index Size Management

Monitor index size and selectivity:

// Check index statistics
db.collection.aggregate([
  { "$indexStats": {} }
])

// Analyze index usage
db.collection.explain("executionStats").find({
  "category": "books",
  "metadata.author": "John Doe"
})

Memory Usage Optimization

// Configure index build options
db.collection.createIndex(
  {
    "type": 1,
    "attributes.$**": 1
  },
  {
    "background": true,
    "maxTimeMS": 300000
  }
)

Best Practices

Index Design Strategy

  1. Prefix Optimization: Place high-selectivity fields first
  2. Cardinality Analysis: Consider field value distribution
  3. Query Pattern Alignment: Match index structure to common queries
  4. Resource Monitoring: Track index performance metrics

Schema Design Considerations

// Optimal document structure for compound wildcards
{
  "_id": ObjectId("..."),
  "category": "electronics",        // High selectivity prefix
  "subcategory": "smartphones",     // Secondary filter
  "attributes": {                   // Dynamic fields
    "brand": "Apple",
    "model": "iPhone 15",
    "storage": "256GB",
    "color": "blue"
  },
  "metadata": {
    "created": ISODate("..."),
    "tags": ["premium", "5G"]
  }
}

Monitoring and Maintenance

Performance Metrics

// Index usage analysis
db.runCommand({
  "planCacheClear": "collection_name"
})

// Query performance profiling
db.setProfilingLevel(2, { slowms: 100 })
db.system.profile.find().sort({ ts: -1 }).limit(5)

Index Health Checks

// Validate index effectiveness
db.collection.find({
  "category": "electronics",
  "attributes.brand": "Samsung"
}).explain("executionStats")

// Check for unused indexes
db.runCommand({ "collStats": "collection_name", "indexDetails": true })

Migration Strategies

Upgrading from Single Wildcards

// Before: Single wildcard index
db.collection.dropIndex({ "attributes.$**": 1 })

// After: Compound wildcard index
db.collection.createIndex({
  "category": 1,
  "attributes.$**": 1
})

Zero-Downtime Index Creation

// Rolling index deployment
db.collection.createIndex(
  {
    "status": 1,
    "data.$**": 1
  },
  {
    "background": true,
    "name": "compound_wildcard_v2"
  }
)

Common Pitfalls and Solutions

Over-Indexing Prevention

  • Limit wildcard projections to necessary fields
  • Use partial indexes for filtered datasets
  • Monitor index-to-collection size ratios
// Force index usage when needed
db.collection.find({
  "category": "books",
  "metadata.genre": "fiction"
}).hint({ "category": 1, "metadata.$**": 1 })

Conclusion

Compound wildcard indexes in MongoDB 7.0 provide unprecedented flexibility for optimizing queries across dynamic schemas. By combining specific field indexing with wildcard patterns, these indexes enable efficient querying of evolving document structures while maintaining excellent performance characteristics.

The key to success lies in understanding your query patterns, designing indexes that align with your most common operations, and continuously monitoring performance to ensure optimal resource utilization. With proper implementation, compound wildcard indexes can significantly improve application performance while reducing the complexity of index management in dynamic environments.

Further Reading: