
Optimal Indexing for PostgreSQL Performance
Introduction

Welcome to this comprehensive guide on PostgreSQL indexing strategies. Throughout this presentation, we'll explore how
proper indexing can dramatically boost your database performance and scalability.

The Impact of Indexing

Indexing remains the central pillar of PostgreSQL performance tuning, often determining whether your application flies or
crawls. With the right indexing strategy, you can achieve orders of magnitude improvement in query response times while
reducing server resource consumption.

Common Indexing Challenges

Many PostgreSQL performance issues stem from missing, redundant, or poorly constructed indexes. A single well-placed index
can reduce query times from minutes to milliseconds, while an unnecessary index can waste storage and slow down write
operations. Understanding this balance is key to database optimization.

What We'll Cover

The mechanics of how
PostgreSQL uses various index
types

Strategies for choosing the right
index for different query patterns

When to use specialized indexes
like GIN, GiST, or BRIN

How to identify missing indexes and optimize existing
ones

Practical techniques for maintaining index health over
time

Expected Outcomes

By the end of this presentation, you'll have a framework for optimizing your PostgreSQL databases through intelligent indexing
decisions, enabling you to solve performance bottlenecks and design for future scalability.

by Shiv Iyer

Why Indexing Matters

1 Performance Bottlenecks
A significant portion of database
performance issues stem directly
from inadequate or missing
indexes. Without proper indexing,
even well-optimized queries can
suffer from slow execution times
as PostgreSQL struggles to
efficiently locate the required
data. Identifying and addressing
these bottlenecks is crucial for
maintaining a responsive and
scalable database environment.

2 Accelerated Queries
Well-designed indexes can
dramatically improve query
performance, reducing response
times from minutes to
milliseconds. By creating a
structured lookup mechanism,
indexes allow the database to
quickly pinpoint the rows that
satisfy a query's criteria, avoiding
the need to scan through entire
tables. The difference in
performance can be particularly
noticeable for complex queries
involving joins, aggregations, or
filtering operations.

3 Reduced Resource
Consumption
Optimized indexes minimize CPU
and I/O load, translating to
infrastructure cost savings and
improved application scalability.
When queries run faster, they
consume fewer server resources,
freeing up processing power and
disk bandwidth for other tasks.
This can lead to improved overall
system performance, reduced
latency, and the ability to handle
higher concurrent workloads.

Without appropriate indexing, PostgreSQL is forced to scan entire tables to locate matching records. This process becomes
exponentially slower as the volume of data increases. Even moderately sized databases can become sluggish, especially with
concurrent users. A query that might take seconds or minutes on a 10 million row table could be executed in mere milliseconds
with effective indexing. Consider a scenario where a user is searching for a specific product in an e-commerce database. Without
an index on the product name or ID, the database would need to examine every single row in the product table to find matches,
resulting in a frustratingly slow search experience.

The benefits of proper indexing extend beyond just speed. They impact application responsiveness, user experience, server
capacity planning, and even energy efficiency. In modern applications, data volumes are constantly growing, making the
difference between indexed and non-indexed queries critical for handling peak loads without timeouts or user frustration. In
transaction-heavy systems, intelligent indexing can be the key to smooth scaling and avoiding constant performance
interventions. Furthermore, with the increasing emphasis on sustainable computing, reducing resource consumption through
efficient indexing contributes to a greener IT footprint.

While insufficient indexing leads to obvious performance degradation, excessive indexing can also create challenges such as
slower write speeds, increased maintenance, and higher storage costs. Each index adds overhead to INSERT, UPDATE, and
DELETE operations, as the database must update the index structure whenever the underlying data changes. Therefore,
achieving the right balance requires a deep understanding of your data access patterns and PostgreSQL's internal optimization
techniques. Regular monitoring of index usage and performance is essential for identifying opportunities to optimize or remove
unnecessary indexes.

PostgreSQL Indexing Basics
B-tree: The Default Structure

PostgreSQL uses B-tree indexes by default, organizing data
in a balanced tree structure that enables quick lookups. This
structure works efficiently for equality operations (=) and
range queries (>, <, BETWEEN).

B-trees maintain a balance between read performance, write
overhead, and storage requirements, making them suitable
for most general-purpose scenarios.

The B-tree structure ensures that data retrieval operations
have logarithmic time complexity (O(log n)), providing
consistent performance even as the dataset grows into
millions of rows. The leaf nodes contain pointers to the actual
table data, allowing PostgreSQL to quickly locate specific
records without scanning the entire table.

Each node in a B-tree contains multiple keys and pointers,
maximizing disk I/O efficiency by reducing the number of
disk reads required to traverse from root to leaf nodes during
query execution.

When PostgreSQL Uses Indexes

When a WHERE clause references an indexed column

For JOIN conditions on indexed columns

When sorting (ORDER BY) on indexed fields

During aggregation operations with GROUP BY

The query planner decides whether to use an index based on
statistics, table size, and estimated result set size.

PostgreSQL may opt for a sequential scan instead of an index
scan if it estimates that a large percentage of the table will be
returned. This typically occurs when more than 5-10% of
rows would match the query condition, as the overhead of
random access via the index becomes less efficient than
reading the entire table sequentially.

The planner also considers factors such as index selectivity,
correlation between columns, and available memory for
operations. Understanding these decision points is crucial for
diagnosing why an index might not be used even when it
exists.

For complex queries involving multiple conditions,
PostgreSQL can combine multiple indexes using bitmap index
scans, providing efficient access paths even when no single
index covers all query conditions.

How PostgreSQL Handles Indexes Internally

Query Submission
Query arrives at PostgreSQL server

The process begins when a SQL query is submitted to
the PostgreSQL server for execution. This triggers the
query processing pipeline.

Query Planning
Planner evaluates available indexes and access paths

The query planner examines the query and available
indexes to determine the most efficient way to retrieve
the requested data. It considers various access paths,
including index scans and sequential scans.

Scan Selection
Index scan chosen for selective queries, sequential scan
for large result sets

Based on statistics and estimated costs, the planner
selects either an index scan for queries expected to
return a small subset of rows or a sequential scan for
large result sets where reading the entire table is more
efficient.

Data Retrieval
Index pointers locate exact table rows, avoiding full
table scan

If an index scan is chosen, the index pointers are used
to directly locate the relevant rows in the table,
avoiding a full table scan and significantly improving
query performance.

PostgreSQL tracks index usage statistics in the pg_stat_user_indexes view, allowing administrators to identify which indexes are
being used and how frequently. This information is crucial for ongoing index optimization.

Types of Indexes in PostgreSQL

B-tree
The default index type in PostgreSQL, B-tree indexes are
optimized for equality and range queries. They work
efficiently with comparison operators such as <, <=, =, >=,
and >, making them suitable for most common scenarios.
They are versatile and can handle various data types,
ensuring broad applicability across different database
schemas. B-tree indexes maintain a sorted tree structure,
enabling quick lookups and ordered data retrieval.

Hash
Hash indexes are specialized for equality operations only
and are best used when you only need exact matches and
no range queries. Unlike B-tree indexes, hash indexes do
not support range scans or ordered results. They use a
hash function to compute the location of each row,
providing very fast lookups for simple equality checks.
However, they are less commonly used due to their
limitations and the availability of more versatile index
types like B-tree.

GiST and SP-GiST
GiST (Generalized Search Tree) indexes and SP-GiST
(Space-Partitioned GiST) indexes are used for spatial data,
full-text search, and complex custom data types. GiST
indexes support a wide range of search algorithms and
data types, making them highly adaptable. SP-GiST
indexes are an optimization of GiST, particularly useful
when dealing with non-balanced data distributions. They
efficiently handle data with varying densities, ensuring
fast search performance even in complex scenarios.

GIN and BRIN
GIN (Generalized Inverted Index) indexes are designed for
multi-value columns such as arrays and JSON data types.
They allow you to index individual elements within these
complex data structures, enabling efficient searches for
specific values within arrays or JSON documents. BRIN
(Block Range INdex) indexes are suitable for very large
tables with natural ordering, such as time-series data.
They work by storing summary information about blocks
of data, reducing the index size and improving
performance for queries that align with the natural
ordering of the data.

B-tree Indexes: The Default Workhorse

1 Performance Profile
Excellent balance of read speed and write overhead,
making them suitable for both OLTP and OLAP
workloads. They provide fast lookups for equality and
range queries with minimal impact on write operations.

2 Query Support
Supports equality, range queries, prefix-based LIKE,
and sorting, enabling versatile query optimization. They
are particularly effective for queries that involve
conditions based on indexed columns.

3 Storage Characteristics
Self-balancing tree structure ensures consistent
performance and automatically adjusts to changes in
data distribution. This eliminates the need for manual
intervention and ensures stable query performance
over time.

4 Usage Statistics
Used in the vast majority of production databases
(95%+) due to their reliability and broad applicability.
They are the default choice for most indexing needs in
PostgreSQL.

B-tree indexes are the workhorses of PostgreSQL, organizing data in a balanced tree structure with sorted keys and pointers.
This design allows PostgreSQL to quickly locate data without full table scans. By dividing the search space at each tree level, B-
trees minimize the comparisons needed to find specific values efficiently.

This balanced architecture ensures consistent performance, irrespective of the queried values, making B-trees ideal for general-
purpose indexing needs. This balance ensures predictable query times, even with growing data volumes, which is critical for
maintaining application responsiveness. For example, in an e-commerce database, a B-tree index on the c̀ustomer_id̀ column
allows for fast retrieval of customer orders, regardless of how many orders are in the system.

B-tree indexes in PostgreSQL are highly configurable and adaptable to specific workload patterns. They support numerous data
types, including numeric, text, and date/time, making them suitable for diverse database schemas. As self-maintaining
structures, they automatically adapt to data changes, reducing the need for manual upkeep. Furthermore, parameters like
f̀illfactor̀ can be tuned to optimize space utilization and performance for specific workloads, providing a high degree of
customization.

Hash Indexes: When to Use Them

1
What's Changed
Prior to PostgreSQL 10, hash indexes weren't crash-safe and were rarely used in production. Since version 10,
they're fully WAL-logged and reliable for production use.

2
Hash indexes are now competitive with B-trees for equality-only operations, sometimes offering better
performance with a smaller storage footprint.

3
This improvement in reliability and performance makes hash indexes a viable alternative for specific scenarios
where equality checks are the primary query pattern. However, it's essential to understand their limitations before
deploying them in production environments.

4

Ideal Use Cases
Simple equality checks (col = value)

High-cardinality columns (many unique values)

Memory-constrained environments

Lookup tables with fixed values

Hash indexes don't support range queries, sorting, or prefix matching, making them unsuitable as general-
purpose replacements for B-trees.

Therefore, consider hash indexes when your queries are predominantly equality-based and the columns being
indexed have a large number of distinct values. Avoid them if your application requires range-based searches or
sorting operations on the indexed columns.

GiST and SP-GiST Indexes
GiST (Generalized Search Tree)

GiST is a versatile indexing framework that stands for
Generalized Search Tree. It supports custom data types,
allowing you to define indexes for complex data structures.
GiST indexes are particularly useful for complex queries,
supporting a wide range of operations beyond simple
equality checks.

Ideal for "contains," "overlaps," and "nearest neighbor"
operations, making it suitable for spatial and geometric
data.

Used extensively in geographic information systems (GIS)
with the PostGIS extension and for advanced text search
capabilities with tsvector.

SP-GiST (Space-Partitioned GiST)

SP-GiST is a specialized form of GiST, designed for non-
balanced data distributions. This means it's optimized for
cases where some values appear much more frequently than
others. SP-GiST implements space-partitioning trees like
quadtrees and k-d trees, which are effective for organizing
data in multi-dimensional spaces.

Excellent for indexing IP address ranges and phone
number ranges, where certain prefixes might be more
common.

Offers better performance compared to standard GiST
indexes when dealing with clustered or skewed data,
where data points are not evenly distributed.

Common Applications

Both GiST and SP-GiST index types excel in specialized domains where traditional B-tree indexes are inefficient or unsuitable.
These indexes enable PostgreSQL to compete with specialized database systems for very specific workload requirements,
extending its functionality beyond standard relational data.

Enables powerful spatial extensions like PostGIS, allowing PostgreSQL to efficiently handle geographic data and spatial
queries.

Supports advanced text search with language-specific features, stemming, and ranking capabilities, enhancing text-based
search performance.

Facilitates multi-dimensional data queries, making it possible to efficiently search and retrieve data based on multiple criteria
or attributes simultaneously.

GIN and BRIN Indexes
GIN (Generalized Inverted Index)

GIN indexes excel at handling columns where each row
contains multiple values that need to be searchable
individually. They're perfect for:

Array columns where you need to find rows containing
specific array elements

JSONB fields with complex conditions and containment
queries

Full-text search where documents contain many words

GIN indexes are larger and slower to build than B-trees but
offer superior query performance for complex data
structures. GIN indexes work by creating an inverted index
where each value points back to the rows that contain it. This
makes lookups very fast when searching for specific values
within complex data types. However, this structure can result
in a larger index size and slower write performance
compared to B-tree indexes. When deciding to use a GIN
index, consider the trade-offs between read and write
performance, and the size of the index relative to the table.

BRIN (Block Range INdex)

BRIN indexes store summary information about blocks of
table data instead of individual rows, making them incredibly
space-efficient:

Time-series data with timestamps in sequence

Sensor readings stored chronologically

Tables with natural physical ordering

A BRIN index might be 1000x smaller than a B-tree while still
eliminating 90% of table scans for range queries on ordered
data. BRIN indexes are most effective when the data is
physically sorted on disk according to the indexed column. In
such cases, the index can efficiently exclude large ranges of
blocks that do not contain the search value. However, if the
data is not well-correlated with its physical storage order, the
effectiveness of the BRIN index can be significantly reduced.
Regular maintenance and clustering of the table may be
necessary to maintain optimal performance of BRIN indexes.

Multi-Column Indexes

Structure and Function
Multi-column indexes combine two or more columns in
a single index structure. They're especially valuable
when queries frequently filter or join on the same set of
columns together. This type of index optimizes queries
that use multiple columns in their WHERE clause,
providing a more efficient search path than individual
single-column indexes could offer.

Consider a scenario where you often query based on
both customer_id and order_date. A multi-column
index on (customer_id, order_date) can significantly
speed up these queries.

Performance Advantages
A properly designed multi-column index can replace
several single-column indexes, reducing storage
overhead and maintenance costs while providing faster
query execution. This is because the query optimizer
can use a single index to satisfy multiple conditions,
rather than having to intersect the results of multiple
index scans.

For instance, instead of having separate indexes on city
and zip_code, a single multi-column index on (city,

zip_code) can serve queries that filter on either or both
columns, leading to better performance and simplified
index management.

Column Order Matters
The order of columns is critical. PostgreSQL can use a
multi-column index efficiently only if the query
references the leading column(s). For example, an index
on (a,b,c) helps queries filtering on a, (a,b), or (a,b,c),
but not queries filtering only on b or c. The leading
column is the most important for initial filtering.

To illustrate, if you have an index on (product_category,

price_range), queries that filter first by
product_category will benefit the most. Queries that
only filter by price_range will not effectively use this
index.

Design Considerations
Create multi-column indexes based on actual query
patterns. Put the most selective columns (those that
filter out the most rows) first, followed by columns used
in range conditions. Selectivity refers to how many
distinct values a column has relative to the total
number of rows; higher selectivity means fewer rows
match a given value.

For example, if you're indexing (status, creation_date),
and status has values like 'active', 'pending', and
'closed', it's likely more selective than creation_date if
you typically query for 'active' records within a date
range. Therefore, status should come first in the index.

Indexes vs Table Size and Query Types
Index Overhead Considerations

1 Storage space: Each index can
add 20-100% to your database
size. This additional storage is
required to maintain the index
structure, especially for large
tables with many indexes. For
instance, a table of 10GB might
require an additional 2GB to 10GB
for indexes.

2 Write performance: Every INSERT,
UPDATE, and DELETE must
update all affected indexes. This
can significantly slow down write-
heavy operations, as the database
needs to maintain index
consistency. For example,
inserting millions of rows into a
table with numerous indexes can
take significantly longer than
inserting into an unindexed table.

3 Maintenance overhead: VACUUM
and ANALYZE operations take
longer. These maintenance tasks
are crucial for performance but
become more resource-intensive
with numerous indexes. A full
VACUUM on a heavily indexed
table might take hours, impacting
database availability.

Consider a scenario where you have a table with frequently updated columns and several indexes. Each update will trigger index
modifications, increasing the write overhead. Regularly monitor index usage and consider removing unused or redundant
indexes to mitigate these costs.

Scan Strategy Selection

1 Index scan: Direct lookup for
small result sets (~1-5% of table).
This is the most efficient scan for
queries that target a small
number of rows based on indexed
columns. For example, a query
using an index to fetch a single
user by ID would use an index
scan.

2 Bitmap scan: For medium-sized
result sets (~5-25% of table).
Bitmap scans are used when
multiple indexes can be combined
to filter rows. If you have indexes
on both c̀itỳ and àgè, and a query
filters on both, a bitmap scan
might be used to combine the
results.

3 Sequential scan: For large result
sets (>25% of table). A sequential
scan reads the entire table, which
is faster when a large portion of
the table needs to be accessed. A
report that needs to aggregate
data from most of the rows would
likely trigger a sequential scan.

For large tables, even an indexed query might use a sequential scan if the query would return many rows. The query planner
evaluates the cost of each scan type and selects the most efficient one based on the estimated number of rows to be returned.
Factors such as the table size, index selectivity, and the complexity of the query all influence this decision. The planner uses
statistics gathered by the ANALYZE command to estimate these costs accurately.

Carefully evaluate the trade-offs between read performance gains and write performance costs when designing your indexing
strategy. In summary, effective indexing requires a balance between improving query performance and managing the overhead
associated with index maintenance. Regularly review your indexing strategy to ensure it aligns with your query patterns and
data volumes, optimizing for both read and write operations.

Index Scanning Strategies in PostgreSQL

Sequential Scan
Reads the entire table, making it suitable for large result
sets. The query planner selects this strategy when a
significant portion of the table needs to be accessed, as it
avoids the overhead of index lookups. While inefficient for
targeted queries, it becomes optimal when most rows are
required.

Bitmap Index Scan
Constructs an in-memory bitmap of matching rows. This
strategy is particularly effective when combining multiple
indexes to filter rows, allowing for complex query
conditions to be efficiently evaluated. It's a versatile
approach for medium-sized result sets where multiple
indexes can be leveraged.

Index Scan
Employs an index to directly locate specific rows. This is
the preferred method for queries targeting a small number
of rows based on indexed columns, providing rapid access
to the desired data. It's ideal for scenarios where precise
row retrieval is needed.

Index-Only Scan
Retrieves data directly from the index, bypassing table
access altogether. This requires that all columns needed
by the query are included in the index, maximizing
performance by minimizing I/O operations. Regular
vacuuming is essential to maintain the visibility map for
optimal efficiency.

The index-only scan represents PostgreSQL's most efficient data retrieval method, as it fetches data exclusively from the index,
eliminating the need to access the table. To fully capitalize on this, ensure that all columns required by the query are
incorporated into the index. Furthermore, maintaining an up-to-date visibility map through frequent vacuuming is critical for
sustained performance.

Partial indexes offer a powerful means to boost performance by indexing only a subset of rows that are frequently queried. By
focusing on specific data segments, such as active users or recent orders, partial indexes reduce index size and accelerate both
read and write operations. This targeted approach optimizes resource utilization and enhances overall query responsiveness.

When NOT to Index
While indexes generally improve query performance, they come with costs and aren't always beneficial. Here are key scenarios
where indexing might be counterproductive:

Small Tables
Tables with fewer than a few thousand rows often don't
benefit from indexes. A sequential scan of a small table
can be faster than the overhead of using an index,
especially if the table fits in memory. In such cases, the
query planner will likely choose a sequential scan
regardless of available indexes. PostgreSQL's statistics
collector is smart enough to recognize when scanning
the entire table is more efficient.

Write-Heavy Workloads
Each additional index slows down write operations. For
tables experiencing hundreds or thousands of inserts
per second, excessive indexes can create bottlenecks
and lead to index bloat, degrading overall performance.
The cost of maintaining indexes on frequently updated
tables can outweigh the benefits for read operations.
Consider using unlogged tables or delaying index
creation until after bulk loads to improve write
performance.

Low-Cardinality Columns
Columns with few unique values (like boolean flags,
status codes, or gender) typically don't benefit from
standard indexes. The query planner often ignores
indexes on low-cardinality columns because the
selectivity is poor. Partial indexes or covering indexes
might still help in specific query patterns by targeting
specific values within these columns. As a rule of
thumb, if a column has fewer than 100 distinct values in
a large table, a standard B-tree index may not be
helpful.

Rarely Queried Data
Indexes that support queries run only a few times a
month may not justify their ongoing maintenance cost.
The storage space and maintenance overhead of these
indexes can be significant. Consider creating temporary
indexes for occasional reporting needs rather than
permanent ones to minimize long-term overhead. For
infrequent analytics, materialized views might be a
better alternative than maintaining permanent indexes.

Full Text Search Without Proper Indexes
Adding regular B-tree indexes for text search
operations like LIKE '%term%' won't help and may
waste resources. PostgreSQL won't use standard
indexes for wildcard searches that start with a wildcard.
For text search, specialized indexes like GIN with the
pg_trgm extension or full-text search capabilities with
the tsvector data type are more appropriate than
conventional indexing approaches.

OLAP and Data Warehouse Workloads
In analytical processing where queries scan large
portions of tables, traditional row-based indexes may
not be optimal. For these workloads, consider columnar
storage extensions, partitioning strategies, or
specialized index types like BRIN (Block Range
INdexes) that provide lightweight indexing for
sequential data. Sometimes materialized views with
targeted aggregations outperform heavily indexed
tables for analytical queries.

Remember that every index has both a storage cost and a maintenance cost. The PostgreSQL query planner is sophisticated
enough to determine when using an index is more efficient than a sequential scan, so creating unnecessary indexes can waste
resources without improving performance.

Identifying Missing Indexes
Using EXPLAIN and EXPLAIN ANALYZE

These commands reveal the query execution plan chosen by
PostgreSQL:

Seq Scan operations on large tables indicate potential
missing indexes

High Rows Removed by Filter values suggest a missing
or ineffective index

Sort operations could be eliminated with proper indexes

Always compare estimated rows with actual rows to identify
statistics issues.

pg_stat_statements for High-Cost Queries

This extension tracks execution statistics across your
database:

Identifies frequently run and high-total-cost queries

Shows average execution time to prioritize tuning efforts

Reveals queries with high shared_blks_read counts that
could benefit from indexing

Focus on queries with both high execution counts and high
average runtimes for maximum impact.

Common Indexing Mistakes

Over-Indexing

Adding too many indexes creates storage overhead,
slows down writes, and complicates maintenance.
Each additional index has diminishing returns and
increases the planner's workload to choose the right
strategy. Over-indexed databases often see write
performance degrade by 20-30% while query
planning time increases substantially. A well-designed
database typically needs only 1-2 indexes per table
rather than indexes on every potentially queryable
column.

Redundant Indexes

A multi-column index on (a,b) makes a separate index
on (a) unnecessary in most cases. Redundant indexes
waste space and slow down write operations without
providing additional benefits. For example, having
separate indexes on (customer_id), (customer_id,
order_date), and (customer_id, order_date, status) is
wasteful since the first two are redundant.
PostgreSQL's pg_stat_duplicate_indexes view can
help identify these costly duplications that can
consume up to 40% of your index storage space.

Using the Wrong Index Type

B-tree indexes don't perform well for full-text search
or array containment queries. Match your index type
to your specific query patterns for optimal
performance. For text search, GIN or GiST indexes
with pg_trgm can provide 100x faster searches. For
geometric data, GiST outperforms B-tree dramatically.
For large tables with time-series data, BRIN indexes
can offer 95% of the performance benefit with only 1-
2% of the storage cost of a B-tree index. Choosing the
right index type is often more important than adding
more indexes.

Incorrect Column Order

In multi-column indexes, placing the less selective
column first (e.g., status before user_id) creates
inefficient indexes that the planner may ignore
entirely. For optimal performance, arrange columns
from highest to lowest cardinality4columns with many
unique values should come before those with few
values. A properly ordered index on (user_id, status)
might be used for filtering by user_id alone or both
user_id and status, while an index on (status, user_id)
is nearly useless for filtering by user_id alone. This
mistake can reduce index effectiveness by up to 80%
in real-world workloads.

Beyond these four major mistakes, be wary of not updating your index strategy as data grows. An index strategy that works well
for 100,000 rows often fails at 10 million rows. Regular index maintenance and periodic review of both slow queries and index
usage statistics are essential practices for sustaining optimal database performance.

Partial Indexes for Targeted Performance

 CREATE INDEX idx_active_users
ON users(email)
WHERE status = 'active';

What Are Partial Indexes?

Partial indexes include only rows that satisfy a specific
condition, resulting in a smaller and more efficient index. Use
them when queries consistently filter data based on the same
criteria. This reduces the index size and improves
performance for queries that match the condition.

This example creates an index for active users only. If active
users represent a small subset of the total user base, the
index size can be significantly reduced, leading to faster
index scans and reduced storage costs. Partial indexes are
particularly useful when a significant portion of the table data
is rarely accessed or queried.

The performance impact can be substantial - a partial index
might be 70-90% smaller than a full index on the same
column, resulting in proportionally faster lookup times. For
tables with millions of rows, this can transform slow queries
into near-instantaneous ones.

PostgreSQL's optimizer is smart enough to choose the
partial index only when the query condition matches or is
compatible with the index's WHERE clause. For example, a
query with WHERE status = 'active' AND email LIKE

'%@example.com' would effectively use our partial index
example above.

Benefits and Use Cases

1 Smaller indexes mean faster operations
and reduced disk space, leading to
improved query performance.

2 Fewer updates are needed during writes
to inactive records, reducing write
overhead.

3 Ideal for applications with frequent
"active only" queries, providing a
targeted performance boost.

4 Well-suited for columns with skewed
data, where queries focus on a specific
subset, optimizing index usage.

5 Lower maintenance overhead as index
bloat is minimized on targeted subsets of
data.

6 Can significantly improve overall
database performance by reducing
resource contention.

Consider using partial indexes for scenarios like: recently
active users, non-deleted records, orders with particular
statuses (e.g., 'pending' or 'shipped'), data within a specific
time frame (e.g., last month's transactions), or flagged
content. By targeting specific data subsets, partial indexes
offer significant performance gains compared to full-table
indexes.

For instance, in an e-commerce application, you might create
a partial index on the orders table to index only orders with a
status of 'pending'. This index would be much smaller than an
index on all orders, and queries that filter by status =

'pending' would benefit significantly.

Another powerful application is time-series data, where you
might create: CREATE INDEX idx_recent_logs ON

logs(timestamp, level) WHERE timestamp > NOW() -

INTERVAL '30 days'; This keeps your index focused only on
recent logs, which are typically queried most frequently.

When implementing partial indexes, remember to
periodically review their conditions. As your application
evolves, you may need to adjust these conditions to maintain
optimal performance. For example, if your definition of
"active" users changes from "logged in within 30 days" to
"logged in within 90 days," you'll need to update your partial
index accordingly.

Covering (Included Column) Indexes
Standard Index

Index contains only the indexed column, which is the
minimum requirement for an index.

A standard index helps in quickly locating rows based on the
indexed column but may require additional lookups to
retrieve other columns.

Index + Table Lookup

Most queries need both index and table data, which can lead
to performance bottlenecks.

When a query requires columns not included in the index,
PostgreSQL needs to perform a table lookup after using the
index, which can be slow especially for large tables.

Covering Index

Contains all data needed by the query, eliminating the need
to access the table.

By including all required columns in the index, the database
can satisfy the query directly from the index, resulting in
faster query execution.

Index-Only Scan

Eliminates costly table lookups by fetching all required data
directly from the index.

An index-only scan is the most efficient way to retrieve data,
as it avoids disk I/O associated with table access, especially
beneficial for frequently accessed data.

PostgreSQL 11 introduced the INCLUDE clause, allowing non-key columns to be stored in the index leaf nodes without being part
of the index structure itself. This enables index-only scans for more queries without the overhead of maintaining sort order for
the included columns.

CREATE INDEX idx_orders_customer
ON orders(customer_id)
INCLUDE (status, total);

This index efficiently supports queries like SELECT status, total FROM orders WHERE customer_id = 123 without touching the
table at all.

Expression and Functional Indexes

1 Function-Based Indexing
Index the result of expressions or functions for
specialized queries involving complex calculations or
data transformations. Improves performance when
querying computed or derived values.

Example: Speed up queries based on mathematical
operations applied to a column by creating an
expression index.

2 Case-Insensitive Searches
Create an index on lower(email) for fast, case-
insensitive lookups, a more performant alternative to
ILIKE. Preserves proper case in the actual data.

Benefit: Direct index usage avoids full table scans and
the slower ILIKE operator, especially on large tables.

3 Date/Time Transformations
Use indexes on date_trunc('day', timestamp) to
accelerate aggregations and time-based lookups for
time series data or reporting. Efficient for queries
filtering by day, month, or year.

Example: Index date_trunc('month', order_date) for
faster retrieval of monthly sales data.

4 JSON/JSONB Field Extraction
For consistent queries on specific JSON fields, create
expression indexes on those paths, such as ((data-

>>'user_id')::int), to avoid full JSON scanning. Essential
for optimizing queries on semi-structured data.

Benefit: Direct access to indexed data without parsing
the entire JSON document, improving query
performance, especially for nested fields.

Unique Indexes and Constraints
Feature PRIMARY KEY UNIQUE Constraint UNIQUE Index

Enforces uniqueness Yes Yes Yes

Creates an index Yes (B-tree) Yes (B-tree) Yes (B-tree)

Allows NULL values No Yes (one NULL only) Yes (one NULL only)

Referenced by foreign keys Yes Yes No

Declarative referential
integrity

Yes Yes No

Both PRIMARY KEY and UNIQUE constraints create unique indexes automatically. The key differences are semantic: PRIMARY
KEY implies "this is the main identifier" while UNIQUE merely enforces uniqueness. A table can have only one PRIMARY KEY,
which also serves as the clustered index in many database systems, although PostgreSQL doesn't have clustered indexes in the
same way as some other databases. UNIQUE constraints, on the other hand, can be multiple within a single table, each ensuring
uniqueness across different columns or combinations of columns.

In terms of query performance, all three options provide the same speed benefits, as they all create the same type of B-tree
index. The choice should be based on your data integrity requirements rather than performance concerns. When deciding
between a UNIQUE constraint and a UNIQUE index, consider that constraints offer a more declarative way to define data
integrity rules within your database schema. Also consider that Foreign keys can reference UNIQUE constraints but not UNIQUE
indexes.

It's also worth noting that PostgreSQL treats NULL values in UNIQUE indexes and constraints in a specific way: it allows only one
NULL value per unique key. This is because NULL is not considered equal to itself in SQL. If you need to enforce uniqueness
across a column that may contain NULLs, you might need to consider alternative approaches, such as using a partial index with a
WHERE clause that excludes NULL values, combined with a CHECK constraint to enforce the desired behavior.

Index Maintenance and Bloat
How Index Bloat Occurs

When rows are updated or deleted in PostgreSQL, the
original index entries aren't immediately removed but are
marked as dead. This creates "bloat"4indexes that consume
more space than necessary and perform suboptimally.

Common causes of excessive index bloat include:

High update rates on indexed columns

Insufficient autovacuum settings

Long-running transactions preventing vacuum cleanup

Batch operations that modify large portions of indexed
data

Frequent index rebuilds during peak hours

The impact of bloat can be severe4query performance can
degrade by 2-10x, and disk space usage may increase
dramatically. In extreme cases, indexes might consume 5x
more space than necessary, leading to increased I/O and
reduced cache efficiency.

Maintenance Operations

VACUUM reclaims space and updates statistics but doesn't
rebuild the index. It's run automatically by autovacuum but
can be manually triggered.

For optimal autovacuum settings, consider:

Adjusting autovacuum_vacuum_scale_factor (default:
0.2)

Lowering autovacuum_vacuum_threshold for frequently
updated tables

Setting table-specific autovacuum parameters

REINDEX completely rebuilds a bloated index, which locks
the table for writes but produces optimally structured
indexes. For production systems, consider CREATE INDEX
CONCURRENTLY followed by dropping the old index.

Alternative maintenance approaches:

Regular index rotation (create new ³ switch ³ drop old)

Scheduled maintenance windows for full REINDEX
operations

Using pg_repack extension for online table and index
reorganization

Monitor bloat with the pg_stat_user_indexes view and
specialized extensions like pgstattuple. The bloat_check.sql
script from check_postgres is also useful for identifying
problematic indexes.

Monitoring Index Usage
pg_stat_user_indexes View

This system view tracks detailed statistics about how often
each index is used in scans, providing essential data for
identifying both unused and heavily used indexes. Key
columns include idx_scan (number of index scans initiated),
idx_tup_read (number of index entries returned), and
idx_tup_fetch (number of live table rows fetched by index).

pg_indexes_size Function

This function returns the total disk space used by indexes on
a specified table. Combined with usage statistics, it helps
identify indexes that consume significant space while
providing little benefit. Large, unused indexes are prime
candidates for removal.

The most valuable indexes typically show high ratios of idx_scan to sequential scans on their tables. Indexes with zero scans
since the last database statistics reset are candidates for removal, although seasonal workloads should be considered before
dropping indexes.

Real-World Index Optimization: Case Study #1

Initial Problem: E-
Commerce Search
Slowdown
An online retailer was
experiencing 3+ second
response times for product
searches as their catalog
grew beyond 500,000 items.
Customer complaints
increased and cart
abandonment rates rose by
15%.

Analysis and
Diagnosis
EXPLAIN ANALYZE revealed
full sequential scans on the
products table with costly
sorts. The existing single-
column indexes weren't
being used effectively for
multi-faceted searches that
combined categories,
attributes, and text queries.

Implemented
Solutions
1. Created a GIN index on the
product_name and
description using tsvector for
text search

2. Added a multi-column B-
tree index on (category_id,
brand_id, price)

3. Implemented a partial
index for products where
in_stock=true (90% of
searches)

Results and Learnings
Search response time
dropped from 3 seconds to
25ms (120x improvement).
Server CPU load decreased
by 45% despite a 20%
increase in traffic. Key
learning: combined text
search with attribute filtering
required specialized indexes
for each access pattern.

Real-World Index Optimization: Case Study #2
SaaS Analytics Platform Challenge

A B2B analytics platform stored client event data in a flexible
JSONB column to accommodate varying event schemas
across customers. As data volume grew to 50+ million
events, dashboard loading times exceeded 30 seconds,
making the product unusable for larger clients.

The core problem involved both flexible filtering (users could
create custom reports based on any event attribute) and
aggregation performance across these semi-structured
JSON documents.

GIN Index Solution

The team implemented a comprehensive indexing strategy:

Created a GIN index on the entire JSONB field using
jsonb_path_ops for containment queries

Added expression indexes on the most common key paths
like ((data->>'event_type'))

Implemented a BRIN index on the event timestamp for
time-range filtering

Added partial indexes for the most common report types

Query times dropped from 30+ seconds to under 200ms,
eliminating full table scans entirely. The solution maintained
schema flexibility while delivering performance comparable
to a traditional normalized schema.

Indexes and Partitioned Tables

Partitioning Benefits
Partitioning splits large tables into manageable chunks by range, list, or hash values, improving performance
through targeted scans and efficient partition pruning.

Index Creation Strategies
Indexes can be created on the parent table (propagating to all partitions) or individually on each partition4offering
either consistency or partition-specific optimization.

Global vs. Local Indexes
PostgreSQL implements local indexes where each partition maintains its own index, enhancing write performance
but requiring the planner to access multiple indexes when scanning across partitions.

Performance Considerations
For time-series data, index only recent partitions with frequent queries. Older, rarely-accessed partitions often
benefit more from reduced storage than query speed.

Indexes and Foreign Data Wrappers (FDW)
How FDW Indexing Works

Foreign Data Wrappers allow PostgreSQL to access data
stored in external systems like other databases, CSV files, or
web services. Index usage with FDWs depends entirely on the
specific wrapper's implementation.

The postgres_fdw (for remote PostgreSQL servers) supports
the most advanced index features, allowing index information
from the remote server to influence the local query planner.

Index Pushdown Capabilities

postgres_fdw: Full support for remote index usage with
WHERE clause pushdown

mysql_fdw: Basic WHERE clause pushdown but limited
index usage information

file_fdw: No index support (full file scan for every query)

mongodb_fdw: Partial support for index-based queries

When working with FDWs, EXPLAIN shows which conditions
are "pushed down" to the remote server where they can
utilize remote indexes. Conditions not pushed down are
applied after data retrieval, usually resulting in poor
performance.

Index Design for Write-Intensive Workloads

Write Performance Challenges
Each index on a table adds overhead to write

operations (INSERT, UPDATE, DELETE). For write-
heavy applications like logging systems or IoT data

collection, excessive indexing can create serious
bottlenecks.

HOT (Heap-Only Tuple) Updates
PostgreSQL's HOT feature allows for more efficient
updates when non-indexed columns change. By
minimizing index modifications, HOT updates
significantly improve write performance. Consider
keeping frequently updated columns out of indexes
when possible.

Strategic Partial Indexing
For write-heavy tables where queries target specific

subsets of data, partial indexes can dramatically
reduce write overhead while maintaining read

performance for critical queries. Covering Indexes for Balance
When both read and write performance matter,
covering indexes (INCLUDE clause) can provide a
good compromise, supporting index-only scans for
important queries while minimizing the number of
separate indexes.

Automation: Index Advising Tools

pg_qualstats
This extension tracks the predicates used in WHERE clauses across your database, helping identify the most
common filter conditions that would benefit from indexing. It maintains statistics on predicate usage frequency
and selectivity, providing empirical data for index creation decisions.

When installed, pg_qualstats works passively in the background, collecting data on query patterns without
impacting performance. The collected statistics can be analyzed through views like pg_qualstats_pretty, which
ranks predicates by their occurrence and potential impact.

HypoPG
HypoPG allows you to create "hypothetical" indexes that don't actually exist but are visible to the query planner.
This lets you test how different indexes would affect query plans without the overhead of creating real indexes,
making it ideal for testing various indexing strategies in production-like environments.

Using functions like hypopg_create_index(), you can simulate an index and then run EXPLAIN to see how it would
affect your queries. This provides valuable insights while avoiding the storage, maintenance, and write overhead
of actual indexes during testing.

pgtune and pgindexadvisor
These purpose-built tools help optimize PostgreSQL configuration and indexing. pgtune provides hardware-
specific configuration recommendations, while pgindexadvisor analyzes query logs to suggest indexes that would
optimize your most common or problematic queries based on actual workload patterns.

pgindexadvisor is particularly valuable for its ability to consider existing indexes and recommend consolidation
where appropriate, potentially reducing the total number of indexes while improving performance.

pg_stat_statements + Auto_explain
When used together, these built-in modules form a powerful index recommendation system. pg_stat_statements
tracks query performance statistics, while auto_explain logs execution plans for slow queries. By analyzing these
logs, you can identify queries that would benefit most from better indexing.

This combination requires minimal setup and works with all PostgreSQL versions. The data gathered can be used
with scripts or manual analysis to determine optimal indexing strategies based on your actual workload.

Cloud Advisors and Tools
Major cloud providers offer automated index recommendations for their PostgreSQL services. AWS Performance
Insights, Azure Database Advisor, and Google Cloud SQL Insights can all suggest missing indexes based on
workload analysis. Third-party tools like pganalyze and pgMustard provide similar capabilities with more detailed
recommendations.

These cloud-based tools typically offer integration with monitoring dashboards and can provide ongoing
recommendations as your workload changes. Many include impact analysis that estimates the potential
performance improvement and storage costs of each suggested index.

Testing and Benchmarking Index Changes
Thorough testing is essential before implementing index changes in production environments to ensure they deliver the
expected performance improvements without negative side effects.

1 pgBench for Load Testing
pgBench is PostgreSQL's built-in benchmarking tool,
allowing you to simulate concurrent users and measure
throughput.

Create custom scripts that mirror your actual
workload patterns

Test with different concurrency levels (1, 10, 50,
100) to identify bottlenecks

Compare performance before and after index
changes using metrics like TPS

Run multiple iterations to ensure consistent results
and identify outliers

Consider both read-only (-S) and read-write (-N)
test scenarios

2 EXPLAIN Benchmarking
EXPLAIN ANALYZE provides detailed execution metrics
for individual queries, revealing exactly how indexes are
being utilized.

Capture baseline execution plans and times before
making any changes

Compare execution plans to verify proper index
usage and scan methods

Look for reduced cost estimates and actual
execution times after changes

Pay attention to both planning time and execution
time metrics

Use BUFFERS option to analyze I/O patterns and
cache efficiency

3 Regression Testing
Index changes can sometimes harm performance for
queries not considered in the initial analysis.

Maintain a comprehensive suite of common queries
to test before deployment

Check both read and write performance impacts
across your application

Verify that the query planner correctly chooses the
new indexes

Watch for plan instability where the optimizer
switches between plans

Monitor overall database size and backup/restore
times after changes

4 Production Validation
Testing in production-like environments provides the
most accurate performance assessment.

Use production data volumes or representative
samples for realistic testing

Implement temporary indexes in non-peak hours to
validate benefits

Consider A/B testing methodologies for critical
applications

Monitor key application metrics beyond just
database statistics

Establish clear rollback procedures before
implementing changes

When evaluating test results, consider the complete picture including query latency, throughput, resource utilization, and
application response times. Remember that perfect benchmark results don't always translate to real-world improvements if test
conditions don't match actual usage patterns.

Troubleshooting Slow Queries
When PostgreSQL queries aren't performing as expected, check these common issues:

Type Mismatches
Implicit type conversions prevent
index usage. Ensure column and
parameter types match exactly.
Watch for integer vs. varchar
comparisons or timestamp vs.
date issues.

Example: WHERE user_id = '1234'
won't use an index if user_id is an
integer column. Use WHERE

user_id = 1234 instead.

Function Calls
Functions on indexed columns
(like LOWER()) prevent standard
index usage unless you have a
matching functional index. Move
functions to the right side of the
equation when possible.

Example: Replace WHERE

LOWER(email) =

'user@example.com' with
WHERE email =

UPPER('user@example.com') or
create a functional index with
CREATE INDEX ON users

(LOWER(email)).

OR Conditions
Multiple OR conditions often lead
to index scans being abandoned.
Consider UNION ALL queries
instead, or ensure each OR clause
has its own index.

Example: SELECT * FROM orders

WHERE status = 'pending' OR

customer_id = 1234 works better
with separate indexes on both
columns, or as two queries
combined with UNION ALL.

Outdated Statistics
The query planner relies on table
statistics to choose execution
plans. Run ANALYZE after
significant data changes to
ensure optimal plan selection.

If plans suddenly change for the
worse, check when statistics were
last updated with SELECT

relname, last_analyze FROM

pg_stat_user_tables; and run
manual ANALYZE on problematic
tables.

Wrong Index Type
Using LIKE '%text%' with a B-tree
index won't work efficiently.
Match your index type to your
query pattern (GIN for JSONB,
GiST for full text, etc.).

For text search, consider creating
a specialized index: CREATE

INDEX ON documents USING

gin(to_tsvector('english',

content)); and use WHERE

to_tsvector('english', content)

@@ to_tsquery('search:*') for
queries.

Inefficient WHERE
Clauses
Non-selective WHERE conditions
that filter out few rows can cause
the planner to avoid indexes
altogether. Ensure your most
selective conditions come first in
compound WHERE clauses.

Use EXPLAIN ANALYZE to check
if your indexes are being used as
expected and consider partial
indexes for frequently filtered
subsets of data.

Locking and Blocking
Concurrent transactions may cause queries to wait on locks, appearing as "slow queries" when they're actually blocked.
Check for lock contention with pg_stat_activity and pg_locks views.

Consider optimizing transaction duration, adding appropriate indexes to reduce lock scope, or implementing row-level
versioning strategies for highly concurrent workloads.

Remember to use EXPLAIN ANALYZE to diagnose specific query performance issues and identify which of these factors might
be affecting your workload.

Indexing Best Practices: Summary & Next Steps

Analyze Your Workload
Identify your most frequent and expensive queries
using pg_stat_statements and pg_stat_user_indexes.
Focus on high-impact improvements rather than trying
to optimize everything. Look for queries with high
total_time, calls, and rows processed to prioritize your
optimization efforts. Examine access patterns to
determine which columns are frequently used in
WHERE, JOIN, and ORDER BY clauses.

Implement Strategically
Choose the right index types for your specific query
patterns. B-tree for equality and range conditions, Hash
for exact equality, GIN for full-text and array searches,
and BRIN for large tables with correlated physical and
logical ordering. Consolidate indexes where possible,
using multi-column indexes with careful column
ordering. Use partial indexes for focused performance
gains on frequently accessed subsets of data.

Measure & Validate
Test thoroughly before and after changes using
EXPLAIN ANALYZE and benchmarking tools. Compare
execution plans and actual timing statistics to verify
improvements. Monitor both query performance and
write overhead, especially during peak load periods.
Document your findings to build a knowledge base of
what works for your specific workloads. Use
pg_stat_statements to track improvements over time
with real workloads.

Maintain & Evolve
Schedule regular index reviews (monthly or quarterly)
as your application evolves. Remove unused indexes
identified with pg_stat_user_indexes to reduce write
overhead and storage costs. Run REINDEX periodically
on frequently updated tables to combat index bloat.
Adjust your strategy as data volumes grow and query
patterns change. Consider automation tools like
pg_qualstats and hypopg for ongoing index
recommendations.

To continue learning, explore the PostgreSQL documentation on indexing, particularly the chapters on index types and query
planning. Community blogs like those by Percona, Cybertec, and pganalyze offer detailed case studies and advanced
techniques. Attend PostgreSQL conferences or webinars where database experts share real-world optimization strategies that
go beyond the basics.

Remember that indexing is both an art and a science4while these principles provide a foundation, every database has unique
characteristics that may require specialized approaches. Balance query performance against write overhead, storage costs, and
maintenance complexity. The ultimate goal is not to have the most indexes, but to have exactly the right indexes for your specific
workload.

Consider setting up automated monitoring of index usage and query performance to catch regressions early. Tools like
pg_stat_monitor, pgBadger, and commercial solutions can help identify changing patterns that might require index adjustments.
Finally, keep in mind that indexing is just one part of database performance4query structure, server configuration, hardware
resources, and application design all play critical roles in your overall PostgreSQL performance strategy.

