
Optimal Indexing for PostgreSQL Performance
Introduction

Welcome to this comprehensive guide on PostgreSQL indexing strategies. Throughout this presentation, we'll explore how 
proper indexing can dramatically boost your database performance and scalability.

The Impact of Indexing

Indexing remains the central pillar of PostgreSQL performance tuning, often determining whether your application flies or 
crawls. With the right indexing strategy, you can achieve orders of magnitude improvement in query response times while 
reducing server resource consumption.

Common Indexing Challenges

Many PostgreSQL performance issues stem from missing, redundant, or poorly constructed indexes. A single well-placed index 
can reduce query times from minutes to milliseconds, while an unnecessary index can waste storage and slow down write 
operations. Understanding this balance is key to database optimization.

What We'll Cover

The mechanics of how 
PostgreSQL uses various index 
types

Strategies for choosing the right 
index for different query patterns

When to use specialized indexes 
like GIN, GiST, or BRIN

How to identify missing indexes and optimize existing 
ones

Practical techniques for maintaining index health over 
time

Expected Outcomes

By the end of this presentation, you'll have a framework for optimizing your PostgreSQL databases through intelligent indexing 
decisions, enabling you to solve performance bottlenecks and design for future scalability.

by Shiv Iyer



Why Indexing Matters

1 Performance Bottlenecks
A significant portion of database 
performance issues stem directly 
from inadequate or missing 
indexes. Without proper indexing, 
even well-optimized queries can 
suffer from slow execution times 
as PostgreSQL struggles to 
efficiently locate the required 
data. Identifying and addressing 
these bottlenecks is crucial for 
maintaining a responsive and 
scalable database environment.

2 Accelerated Queries
Well-designed indexes can 
dramatically improve query 
performance, reducing response 
times from minutes to 
milliseconds. By creating a 
structured lookup mechanism, 
indexes allow the database to 
quickly pinpoint the rows that 
satisfy a query's criteria, avoiding 
the need to scan through entire 
tables. The difference in 
performance can be particularly 
noticeable for complex queries 
involving joins, aggregations, or 
filtering operations.

3 Reduced Resource 
Consumption
Optimized indexes minimize CPU 
and I/O load, translating to 
infrastructure cost savings and 
improved application scalability. 
When queries run faster, they 
consume fewer server resources, 
freeing up processing power and 
disk bandwidth for other tasks. 
This can lead to improved overall 
system performance, reduced 
latency, and the ability to handle 
higher concurrent workloads.

Without appropriate indexing, PostgreSQL is forced to scan entire tables to locate matching records. This process becomes 
exponentially slower as the volume of data increases. Even moderately sized databases can become sluggish, especially with 
concurrent users. A query that might take seconds or minutes on a 10 million row table could be executed in mere milliseconds 
with effective indexing. Consider a scenario where a user is searching for a specific product in an e-commerce database. Without 
an index on the product name or ID, the database would need to examine every single row in the product table to find matches, 
resulting in a frustratingly slow search experience.

The benefits of proper indexing extend beyond just speed. They impact application responsiveness, user experience, server 
capacity planning, and even energy efficiency. In modern applications, data volumes are constantly growing, making the 
difference between indexed and non-indexed queries critical for handling peak loads without timeouts or user frustration. In 
transaction-heavy systems, intelligent indexing can be the key to smooth scaling and avoiding constant performance 
interventions. Furthermore, with the increasing emphasis on sustainable computing, reducing resource consumption through 
efficient indexing contributes to a greener IT footprint.

While insufficient indexing leads to obvious performance degradation, excessive indexing can also create challenges such as 
slower write speeds, increased maintenance, and higher storage costs. Each index adds overhead to INSERT, UPDATE, and 
DELETE operations, as the database must update the index structure whenever the underlying data changes. Therefore, 
achieving the right balance requires a deep understanding of your data access patterns and PostgreSQL's internal optimization 
techniques. Regular monitoring of index usage and performance is essential for identifying opportunities to optimize or remove 
unnecessary indexes.



PostgreSQL Indexing Basics
B-tree: The Default Structure

PostgreSQL uses B-tree indexes by default, organizing data 
in a balanced tree structure that enables quick lookups. This 
structure works efficiently for equality operations (=) and 
range queries (>, <, BETWEEN).

B-trees maintain a balance between read performance, write 
overhead, and storage requirements, making them suitable 
for most general-purpose scenarios.

The B-tree structure ensures that data retrieval operations 
have logarithmic time complexity (O(log n)), providing 
consistent performance even as the dataset grows into 
millions of rows. The leaf nodes contain pointers to the actual 
table data, allowing PostgreSQL to quickly locate specific 
records without scanning the entire table.

Each node in a B-tree contains multiple keys and pointers, 
maximizing disk I/O efficiency by reducing the number of 
disk reads required to traverse from root to leaf nodes during 
query execution.

When PostgreSQL Uses Indexes

When a WHERE clause references an indexed column

For JOIN conditions on indexed columns

When sorting (ORDER BY) on indexed fields

During aggregation operations with GROUP BY

The query planner decides whether to use an index based on 
statistics, table size, and estimated result set size.

PostgreSQL may opt for a sequential scan instead of an index 
scan if it estimates that a large percentage of the table will be 
returned. This typically occurs when more than 5-10% of 
rows would match the query condition, as the overhead of 
random access via the index becomes less efficient than 
reading the entire table sequentially.

The planner also considers factors such as index selectivity, 
correlation between columns, and available memory for 
operations. Understanding these decision points is crucial for 
diagnosing why an index might not be used even when it 
exists.

For complex queries involving multiple conditions, 
PostgreSQL can combine multiple indexes using bitmap index 
scans, providing efficient access paths even when no single 
index covers all query conditions.



How PostgreSQL Handles Indexes Internally

Query Submission
Query arrives at PostgreSQL server

The process begins when a SQL query is submitted to 
the PostgreSQL server for execution. This triggers the 
query processing pipeline.

Query Planning
Planner evaluates available indexes and access paths

The query planner examines the query and available 
indexes to determine the most efficient way to retrieve 
the requested data. It considers various access paths, 
including index scans and sequential scans.

Scan Selection
Index scan chosen for selective queries, sequential scan 
for large result sets

Based on statistics and estimated costs, the planner 
selects either an index scan for queries expected to 
return a small subset of rows or a sequential scan for 
large result sets where reading the entire table is more 
efficient.

Data Retrieval
Index pointers locate exact table rows, avoiding full 
table scan

If an index scan is chosen, the index pointers are used 
to directly locate the relevant rows in the table, 
avoiding a full table scan and significantly improving 
query performance.

PostgreSQL tracks index usage statistics in the pg_stat_user_indexes view, allowing administrators to identify which indexes are 
being used and how frequently. This information is crucial for ongoing index optimization.



Types of Indexes in PostgreSQL

B-tree
The default index type in PostgreSQL, B-tree indexes are 
optimized for equality and range queries. They work 
efficiently with comparison operators such as <, <=, =, >=, 
and >, making them suitable for most common scenarios. 
They are versatile and can handle various data types, 
ensuring broad applicability across different database 
schemas. B-tree indexes maintain a sorted tree structure, 
enabling quick lookups and ordered data retrieval.

Hash
Hash indexes are specialized for equality operations only 
and are best used when you only need exact matches and 
no range queries. Unlike B-tree indexes, hash indexes do 
not support range scans or ordered results. They use a 
hash function to compute the location of each row, 
providing very fast lookups for simple equality checks. 
However, they are less commonly used due to their 
limitations and the availability of more versatile index 
types like B-tree.

GiST and SP-GiST
GiST (Generalized Search Tree) indexes and SP-GiST 
(Space-Partitioned GiST) indexes are used for spatial data, 
full-text search, and complex custom data types. GiST 
indexes support a wide range of search algorithms and 
data types, making them highly adaptable. SP-GiST 
indexes are an optimization of GiST, particularly useful 
when dealing with non-balanced data distributions. They 
efficiently handle data with varying densities, ensuring 
fast search performance even in complex scenarios.

GIN and BRIN
GIN (Generalized Inverted Index) indexes are designed for 
multi-value columns such as arrays and JSON data types. 
They allow you to index individual elements within these 
complex data structures, enabling efficient searches for 
specific values within arrays or JSON documents. BRIN 
(Block Range INdex) indexes are suitable for very large 
tables with natural ordering, such as time-series data. 
They work by storing summary information about blocks 
of data, reducing the index size and improving 
performance for queries that align with the natural 
ordering of the data.



B-tree Indexes: The Default Workhorse

1 Performance Profile
Excellent balance of read speed and write overhead, 
making them suitable for both OLTP and OLAP 
workloads. They provide fast lookups for equality and 
range queries with minimal impact on write operations.

2 Query Support
Supports equality, range queries, prefix-based LIKE, 
and sorting, enabling versatile query optimization. They 
are particularly effective for queries that involve 
conditions based on indexed columns.

3 Storage Characteristics
Self-balancing tree structure ensures consistent 
performance and automatically adjusts to changes in 
data distribution. This eliminates the need for manual 
intervention and ensures stable query performance 
over time.

4 Usage Statistics
Used in the vast majority of production databases 
(95%+) due to their reliability and broad applicability. 
They are the default choice for most indexing needs in 
PostgreSQL.

B-tree indexes are the workhorses of PostgreSQL, organizing data in a balanced tree structure with sorted keys and pointers. 
This design allows PostgreSQL to quickly locate data without full table scans. By dividing the search space at each tree level, B-
trees minimize the comparisons needed to find specific values efficiently.

This balanced architecture ensures consistent performance, irrespective of the queried values, making B-trees ideal for general-
purpose indexing needs. This balance ensures predictable query times, even with growing data volumes, which is critical for 
maintaining application responsiveness. For example, in an e-commerce database, a B-tree index on the c̀ustomer_id̀ column 
allows for fast retrieval of customer orders, regardless of how many orders are in the system.

B-tree indexes in PostgreSQL are highly configurable and adaptable to specific workload patterns. They support numerous data 
types, including numeric, text, and date/time, making them suitable for diverse database schemas. As self-maintaining 
structures, they automatically adapt to data changes, reducing the need for manual upkeep. Furthermore, parameters like 
f̀illfactor̀ can be tuned to optimize space utilization and performance for specific workloads, providing a high degree of 
customization.



Hash Indexes: When to Use Them

1
What's Changed
Prior to PostgreSQL 10, hash indexes weren't crash-safe and were rarely used in production. Since version 10, 
they're fully WAL-logged and reliable for production use.

2
Hash indexes are now competitive with B-trees for equality-only operations, sometimes offering better 
performance with a smaller storage footprint.

3
This improvement in reliability and performance makes hash indexes a viable alternative for specific scenarios 
where equality checks are the primary query pattern. However, it's essential to understand their limitations before 
deploying them in production environments.

4

Ideal Use Cases
Simple equality checks (col = value)

High-cardinality columns (many unique values)

Memory-constrained environments

Lookup tables with fixed values

Hash indexes don't support range queries, sorting, or prefix matching, making them unsuitable as general-
purpose replacements for B-trees.

Therefore, consider hash indexes when your queries are predominantly equality-based and the columns being 
indexed have a large number of distinct values. Avoid them if your application requires range-based searches or 
sorting operations on the indexed columns.



GiST and SP-GiST Indexes
GiST (Generalized Search Tree)

GiST is a versatile indexing framework that stands for 
Generalized Search Tree. It supports custom data types, 
allowing you to define indexes for complex data structures. 
GiST indexes are particularly useful for complex queries, 
supporting a wide range of operations beyond simple 
equality checks.

Ideal for "contains," "overlaps," and "nearest neighbor" 
operations, making it suitable for spatial and geometric 
data.

Used extensively in geographic information systems (GIS) 
with the PostGIS extension and for advanced text search 
capabilities with tsvector.

SP-GiST (Space-Partitioned GiST)

SP-GiST is a specialized form of GiST, designed for non-
balanced data distributions. This means it's optimized for 
cases where some values appear much more frequently than 
others. SP-GiST implements space-partitioning trees like 
quadtrees and k-d trees, which are effective for organizing 
data in multi-dimensional spaces.

Excellent for indexing IP address ranges and phone 
number ranges, where certain prefixes might be more 
common.

Offers better performance compared to standard GiST 
indexes when dealing with clustered or skewed data, 
where data points are not evenly distributed.

Common Applications

Both GiST and SP-GiST index types excel in specialized domains where traditional B-tree indexes are inefficient or unsuitable. 
These indexes enable PostgreSQL to compete with specialized database systems for very specific workload requirements, 
extending its functionality beyond standard relational data.

Enables powerful spatial extensions like PostGIS, allowing PostgreSQL to efficiently handle geographic data and spatial 
queries.

Supports advanced text search with language-specific features, stemming, and ranking capabilities, enhancing text-based 
search performance.

Facilitates multi-dimensional data queries, making it possible to efficiently search and retrieve data based on multiple criteria 
or attributes simultaneously.



GIN and BRIN Indexes
GIN (Generalized Inverted Index)

GIN indexes excel at handling columns where each row 
contains multiple values that need to be searchable 
individually. They're perfect for:

Array columns where you need to find rows containing 
specific array elements

JSONB fields with complex conditions and containment 
queries

Full-text search where documents contain many words

GIN indexes are larger and slower to build than B-trees but 
offer superior query performance for complex data 
structures. GIN indexes work by creating an inverted index 
where each value points back to the rows that contain it. This 
makes lookups very fast when searching for specific values 
within complex data types. However, this structure can result 
in a larger index size and slower write performance 
compared to B-tree indexes. When deciding to use a GIN 
index, consider the trade-offs between read and write 
performance, and the size of the index relative to the table.

BRIN (Block Range INdex)

BRIN indexes store summary information about blocks of 
table data instead of individual rows, making them incredibly 
space-efficient:

Time-series data with timestamps in sequence

Sensor readings stored chronologically

Tables with natural physical ordering

A BRIN index might be 1000x smaller than a B-tree while still 
eliminating 90% of table scans for range queries on ordered 
data. BRIN indexes are most effective when the data is 
physically sorted on disk according to the indexed column. In 
such cases, the index can efficiently exclude large ranges of 
blocks that do not contain the search value. However, if the 
data is not well-correlated with its physical storage order, the 
effectiveness of the BRIN index can be significantly reduced. 
Regular maintenance and clustering of the table may be 
necessary to maintain optimal performance of BRIN indexes.



Multi-Column Indexes

Structure and Function
Multi-column indexes combine two or more columns in 
a single index structure. They're especially valuable 
when queries frequently filter or join on the same set of 
columns together. This type of index optimizes queries 
that use multiple columns in their WHERE clause, 
providing a more efficient search path than individual 
single-column indexes could offer.

Consider a scenario where you often query based on 
both customer_id and order_date. A multi-column 
index on (customer_id, order_date) can significantly 
speed up these queries.

Performance Advantages
A properly designed multi-column index can replace 
several single-column indexes, reducing storage 
overhead and maintenance costs while providing faster 
query execution. This is because the query optimizer 
can use a single index to satisfy multiple conditions, 
rather than having to intersect the results of multiple 
index scans.

For instance, instead of having separate indexes on city 
and zip_code, a single multi-column index on (city, 

zip_code) can serve queries that filter on either or both 
columns, leading to better performance and simplified 
index management.

Column Order Matters
The order of columns is critical. PostgreSQL can use a 
multi-column index efficiently only if the query 
references the leading column(s). For example, an index 
on (a,b,c) helps queries filtering on a, (a,b), or (a,b,c), 
but not queries filtering only on b or c. The leading 
column is the most important for initial filtering.

To illustrate, if you have an index on (product_category, 

price_range), queries that filter first by 
product_category will benefit the most. Queries that 
only filter by price_range will not effectively use this 
index.

Design Considerations
Create multi-column indexes based on actual query 
patterns. Put the most selective columns (those that 
filter out the most rows) first, followed by columns used 
in range conditions. Selectivity refers to how many 
distinct values a column has relative to the total 
number of rows; higher selectivity means fewer rows 
match a given value.

For example, if you're indexing (status, creation_date), 
and status has values like 'active', 'pending', and 
'closed', it's likely more selective than creation_date if 
you typically query for 'active' records within a date 
range. Therefore, status should come first in the index.



Indexes vs Table Size and Query Types
Index Overhead Considerations

1 Storage space: Each index can 
add 20-100% to your database 
size. This additional storage is 
required to maintain the index 
structure, especially for large 
tables with many indexes. For 
instance, a table of 10GB might 
require an additional 2GB to 10GB 
for indexes.

2 Write performance: Every INSERT, 
UPDATE, and DELETE must 
update all affected indexes. This 
can significantly slow down write-
heavy operations, as the database 
needs to maintain index 
consistency. For example, 
inserting millions of rows into a 
table with numerous indexes can 
take significantly longer than 
inserting into an unindexed table.

3 Maintenance overhead: VACUUM 
and ANALYZE operations take 
longer. These maintenance tasks 
are crucial for performance but 
become more resource-intensive 
with numerous indexes. A full 
VACUUM on a heavily indexed 
table might take hours, impacting 
database availability.

Consider a scenario where you have a table with frequently updated columns and several indexes. Each update will trigger index 
modifications, increasing the write overhead. Regularly monitor index usage and consider removing unused or redundant 
indexes to mitigate these costs.

Scan Strategy Selection

1 Index scan: Direct lookup for 
small result sets (~1-5% of table). 
This is the most efficient scan for 
queries that target a small 
number of rows based on indexed 
columns. For example, a query 
using an index to fetch a single 
user by ID would use an index 
scan.

2 Bitmap scan: For medium-sized 
result sets (~5-25% of table). 
Bitmap scans are used when 
multiple indexes can be combined 
to filter rows. If you have indexes 
on both c̀itỳ and àgè, and a query 
filters on both, a bitmap scan 
might be used to combine the 
results.

3 Sequential scan: For large result 
sets (>25% of table). A sequential 
scan reads the entire table, which 
is faster when a large portion of 
the table needs to be accessed. A 
report that needs to aggregate 
data from most of the rows would 
likely trigger a sequential scan.

For large tables, even an indexed query might use a sequential scan if the query would return many rows. The query planner 
evaluates the cost of each scan type and selects the most efficient one based on the estimated number of rows to be returned. 
Factors such as the table size, index selectivity, and the complexity of the query all influence this decision. The planner uses 
statistics gathered by the ANALYZE command to estimate these costs accurately.

Carefully evaluate the trade-offs between read performance gains and write performance costs when designing your indexing 
strategy. In summary, effective indexing requires a balance between improving query performance and managing the overhead 
associated with index maintenance. Regularly review your indexing strategy to ensure it aligns with your query patterns and 
data volumes, optimizing for both read and write operations.



Index Scanning Strategies in PostgreSQL

Sequential Scan
Reads the entire table, making it suitable for large result 
sets. The query planner selects this strategy when a 
significant portion of the table needs to be accessed, as it 
avoids the overhead of index lookups. While inefficient for 
targeted queries, it becomes optimal when most rows are 
required.

Bitmap Index Scan
Constructs an in-memory bitmap of matching rows. This 
strategy is particularly effective when combining multiple 
indexes to filter rows, allowing for complex query 
conditions to be efficiently evaluated. It's a versatile 
approach for medium-sized result sets where multiple 
indexes can be leveraged.

Index Scan
Employs an index to directly locate specific rows. This is 
the preferred method for queries targeting a small number 
of rows based on indexed columns, providing rapid access 
to the desired data. It's ideal for scenarios where precise 
row retrieval is needed.

Index-Only Scan
Retrieves data directly from the index, bypassing table 
access altogether. This requires that all columns needed 
by the query are included in the index, maximizing 
performance by minimizing I/O operations. Regular 
vacuuming is essential to maintain the visibility map for 
optimal efficiency.

The index-only scan represents PostgreSQL's most efficient data retrieval method, as it fetches data exclusively from the index, 
eliminating the need to access the table. To fully capitalize on this, ensure that all columns required by the query are 
incorporated into the index. Furthermore, maintaining an up-to-date visibility map through frequent vacuuming is critical for 
sustained performance.

Partial indexes offer a powerful means to boost performance by indexing only a subset of rows that are frequently queried. By 
focusing on specific data segments, such as active users or recent orders, partial indexes reduce index size and accelerate both 
read and write operations. This targeted approach optimizes resource utilization and enhances overall query responsiveness.



When NOT to Index
While indexes generally improve query performance, they come with costs and aren't always beneficial. Here are key scenarios 
where indexing might be counterproductive:

Small Tables
Tables with fewer than a few thousand rows often don't 
benefit from indexes. A sequential scan of a small table 
can be faster than the overhead of using an index, 
especially if the table fits in memory. In such cases, the 
query planner will likely choose a sequential scan 
regardless of available indexes. PostgreSQL's statistics 
collector is smart enough to recognize when scanning 
the entire table is more efficient.

Write-Heavy Workloads
Each additional index slows down write operations. For 
tables experiencing hundreds or thousands of inserts 
per second, excessive indexes can create bottlenecks 
and lead to index bloat, degrading overall performance. 
The cost of maintaining indexes on frequently updated 
tables can outweigh the benefits for read operations. 
Consider using unlogged tables or delaying index 
creation until after bulk loads to improve write 
performance.

Low-Cardinality Columns
Columns with few unique values (like boolean flags, 
status codes, or gender) typically don't benefit from 
standard indexes. The query planner often ignores 
indexes on low-cardinality columns because the 
selectivity is poor. Partial indexes or covering indexes 
might still help in specific query patterns by targeting 
specific values within these columns. As a rule of 
thumb, if a column has fewer than 100 distinct values in 
a large table, a standard B-tree index may not be 
helpful.

Rarely Queried Data
Indexes that support queries run only a few times a 
month may not justify their ongoing maintenance cost. 
The storage space and maintenance overhead of these 
indexes can be significant. Consider creating temporary 
indexes for occasional reporting needs rather than 
permanent ones to minimize long-term overhead. For 
infrequent analytics, materialized views might be a 
better alternative than maintaining permanent indexes.

Full Text Search Without Proper Indexes
Adding regular B-tree indexes for text search 
operations like LIKE '%term%' won't help and may 
waste resources. PostgreSQL won't use standard 
indexes for wildcard searches that start with a wildcard. 
For text search, specialized indexes like GIN with the 
pg_trgm extension or full-text search capabilities with 
the tsvector data type are more appropriate than 
conventional indexing approaches.

OLAP and Data Warehouse Workloads
In analytical processing where queries scan large 
portions of tables, traditional row-based indexes may 
not be optimal. For these workloads, consider columnar 
storage extensions, partitioning strategies, or 
specialized index types like BRIN (Block Range 
INdexes) that provide lightweight indexing for 
sequential data. Sometimes materialized views with 
targeted aggregations outperform heavily indexed 
tables for analytical queries.

Remember that every index has both a storage cost and a maintenance cost. The PostgreSQL query planner is sophisticated 
enough to determine when using an index is more efficient than a sequential scan, so creating unnecessary indexes can waste 
resources without improving performance.



Identifying Missing Indexes
Using EXPLAIN and EXPLAIN ANALYZE

These commands reveal the query execution plan chosen by 
PostgreSQL:

Seq Scan operations on large tables indicate potential 
missing indexes

High Rows Removed by Filter values suggest a missing 
or ineffective index

Sort operations could be eliminated with proper indexes

Always compare estimated rows with actual rows to identify 
statistics issues.

pg_stat_statements for High-Cost Queries

This extension tracks execution statistics across your 
database:

Identifies frequently run and high-total-cost queries

Shows average execution time to prioritize tuning efforts

Reveals queries with high shared_blks_read counts that 
could benefit from indexing

Focus on queries with both high execution counts and high 
average runtimes for maximum impact.



Common Indexing Mistakes

Over-Indexing

Adding too many indexes creates storage overhead, 
slows down writes, and complicates maintenance. 
Each additional index has diminishing returns and 
increases the planner's workload to choose the right 
strategy. Over-indexed databases often see write 
performance degrade by 20-30% while query 
planning time increases substantially. A well-designed 
database typically needs only 1-2 indexes per table 
rather than indexes on every potentially queryable 
column.

Redundant Indexes

A multi-column index on (a,b) makes a separate index 
on (a) unnecessary in most cases. Redundant indexes 
waste space and slow down write operations without 
providing additional benefits. For example, having 
separate indexes on (customer_id), (customer_id, 
order_date), and (customer_id, order_date, status) is 
wasteful since the first two are redundant. 
PostgreSQL's pg_stat_duplicate_indexes view can 
help identify these costly duplications that can 
consume up to 40% of your index storage space.

Using the Wrong Index Type

B-tree indexes don't perform well for full-text search 
or array containment queries. Match your index type 
to your specific query patterns for optimal 
performance. For text search, GIN or GiST indexes 
with pg_trgm can provide 100x faster searches. For 
geometric data, GiST outperforms B-tree dramatically. 
For large tables with time-series data, BRIN indexes 
can offer 95% of the performance benefit with only 1-
2% of the storage cost of a B-tree index. Choosing the 
right index type is often more important than adding 
more indexes.

Incorrect Column Order

In multi-column indexes, placing the less selective 
column first (e.g., status before user_id) creates 
inefficient indexes that the planner may ignore 
entirely. For optimal performance, arrange columns 
from highest to lowest cardinality4columns with many 
unique values should come before those with few 
values. A properly ordered index on (user_id, status) 
might be used for filtering by user_id alone or both 
user_id and status, while an index on (status, user_id) 
is nearly useless for filtering by user_id alone. This 
mistake can reduce index effectiveness by up to 80% 
in real-world workloads.

Beyond these four major mistakes, be wary of not updating your index strategy as data grows. An index strategy that works well 
for 100,000 rows often fails at 10 million rows. Regular index maintenance and periodic review of both slow queries and index 
usage statistics are essential practices for sustaining optimal database performance.



Partial Indexes for Targeted Performance

          CREATE INDEX idx_active_users 
ON users(email) 
WHERE status = 'active';
        

What Are Partial Indexes?

Partial indexes include only rows that satisfy a specific 
condition, resulting in a smaller and more efficient index. Use 
them when queries consistently filter data based on the same 
criteria. This reduces the index size and improves 
performance for queries that match the condition.

This example creates an index for active users only. If active 
users represent a small subset of the total user base, the 
index size can be significantly reduced, leading to faster 
index scans and reduced storage costs. Partial indexes are 
particularly useful when a significant portion of the table data 
is rarely accessed or queried.

The performance impact can be substantial - a partial index 
might be 70-90% smaller than a full index on the same 
column, resulting in proportionally faster lookup times. For 
tables with millions of rows, this can transform slow queries 
into near-instantaneous ones.

PostgreSQL's optimizer is smart enough to choose the 
partial index only when the query condition matches or is 
compatible with the index's WHERE clause. For example, a 
query with WHERE status = 'active' AND email LIKE 

'%@example.com' would effectively use our partial index 
example above.

Benefits and Use Cases

1 Smaller indexes mean faster operations 
and reduced disk space, leading to 
improved query performance.

2 Fewer updates are needed during writes 
to inactive records, reducing write 
overhead.

3 Ideal for applications with frequent 
"active only" queries, providing a 
targeted performance boost.

4 Well-suited for columns with skewed 
data, where queries focus on a specific 
subset, optimizing index usage.

5 Lower maintenance overhead as index 
bloat is minimized on targeted subsets of 
data.

6 Can significantly improve overall 
database performance by reducing 
resource contention.

Consider using partial indexes for scenarios like: recently 
active users, non-deleted records, orders with particular 
statuses (e.g., 'pending' or 'shipped'), data within a specific 
time frame (e.g., last month's transactions), or flagged 
content. By targeting specific data subsets, partial indexes 
offer significant performance gains compared to full-table 
indexes.

For instance, in an e-commerce application, you might create 
a partial index on the orders table to index only orders with a 
status of 'pending'. This index would be much smaller than an 
index on all orders, and queries that filter by status = 

'pending' would benefit significantly.

Another powerful application is time-series data, where you 
might create: CREATE INDEX idx_recent_logs ON 

logs(timestamp, level) WHERE timestamp > NOW() - 

INTERVAL '30 days'; This keeps your index focused only on 
recent logs, which are typically queried most frequently.

When implementing partial indexes, remember to 
periodically review their conditions. As your application 
evolves, you may need to adjust these conditions to maintain 
optimal performance. For example, if your definition of 
"active" users changes from "logged in within 30 days" to 
"logged in within 90 days," you'll need to update your partial 
index accordingly.



Covering (Included Column) Indexes
Standard Index

Index contains only the indexed column, which is the 
minimum requirement for an index.

A standard index helps in quickly locating rows based on the 
indexed column but may require additional lookups to 
retrieve other columns.

Index + Table Lookup

Most queries need both index and table data, which can lead 
to performance bottlenecks.

When a query requires columns not included in the index, 
PostgreSQL needs to perform a table lookup after using the 
index, which can be slow especially for large tables.

Covering Index

Contains all data needed by the query, eliminating the need 
to access the table.

By including all required columns in the index, the database 
can satisfy the query directly from the index, resulting in 
faster query execution.

Index-Only Scan

Eliminates costly table lookups by fetching all required data 
directly from the index.

An index-only scan is the most efficient way to retrieve data, 
as it avoids disk I/O associated with table access, especially 
beneficial for frequently accessed data.

PostgreSQL 11 introduced the INCLUDE clause, allowing non-key columns to be stored in the index leaf nodes without being part 
of the index structure itself. This enables index-only scans for more queries without the overhead of maintaining sort order for 
the included columns.

CREATE INDEX idx_orders_customer 
ON orders(customer_id) 
INCLUDE (status, total);

This index efficiently supports queries like SELECT status, total FROM orders WHERE customer_id = 123 without touching the 
table at all.



Expression and Functional Indexes

1 Function-Based Indexing
Index the result of expressions or functions for 
specialized queries involving complex calculations or 
data transformations. Improves performance when 
querying computed or derived values.

Example: Speed up queries based on mathematical 
operations applied to a column by creating an 
expression index.

2 Case-Insensitive Searches
Create an index on lower(email) for fast, case-
insensitive lookups, a more performant alternative to 
ILIKE. Preserves proper case in the actual data.

Benefit: Direct index usage avoids full table scans and 
the slower ILIKE operator, especially on large tables.

3 Date/Time Transformations
Use indexes on date_trunc('day', timestamp) to 
accelerate aggregations and time-based lookups for 
time series data or reporting. Efficient for queries 
filtering by day, month, or year.

Example: Index date_trunc('month', order_date) for 
faster retrieval of monthly sales data.

4 JSON/JSONB Field Extraction
For consistent queries on specific JSON fields, create 
expression indexes on those paths, such as ((data-

>>'user_id')::int), to avoid full JSON scanning. Essential 
for optimizing queries on semi-structured data.

Benefit: Direct access to indexed data without parsing 
the entire JSON document, improving query 
performance, especially for nested fields.



Unique Indexes and Constraints
Feature PRIMARY KEY UNIQUE Constraint UNIQUE Index

Enforces uniqueness Yes Yes Yes

Creates an index Yes (B-tree) Yes (B-tree) Yes (B-tree)

Allows NULL values No Yes (one NULL only) Yes (one NULL only)

Referenced by foreign keys Yes Yes No

Declarative referential 
integrity

Yes Yes No

Both PRIMARY KEY and UNIQUE constraints create unique indexes automatically. The key differences are semantic: PRIMARY 
KEY implies "this is the main identifier" while UNIQUE merely enforces uniqueness. A table can have only one PRIMARY KEY, 
which also serves as the clustered index in many database systems, although PostgreSQL doesn't have clustered indexes in the 
same way as some other databases. UNIQUE constraints, on the other hand, can be multiple within a single table, each ensuring 
uniqueness across different columns or combinations of columns.

In terms of query performance, all three options provide the same speed benefits, as they all create the same type of B-tree 
index. The choice should be based on your data integrity requirements rather than performance concerns. When deciding 
between a UNIQUE constraint and a UNIQUE index, consider that constraints offer a more declarative way to define data 
integrity rules within your database schema. Also consider that Foreign keys can reference UNIQUE constraints but not UNIQUE 
indexes.

It's also worth noting that PostgreSQL treats NULL values in UNIQUE indexes and constraints in a specific way: it allows only one 
NULL value per unique key. This is because NULL is not considered equal to itself in SQL. If you need to enforce uniqueness 
across a column that may contain NULLs, you might need to consider alternative approaches, such as using a partial index with a 
WHERE clause that excludes NULL values, combined with a CHECK constraint to enforce the desired behavior.



Index Maintenance and Bloat
How Index Bloat Occurs

When rows are updated or deleted in PostgreSQL, the 
original index entries aren't immediately removed but are 
marked as dead. This creates "bloat"4indexes that consume 
more space than necessary and perform suboptimally.

Common causes of excessive index bloat include:

High update rates on indexed columns

Insufficient autovacuum settings

Long-running transactions preventing vacuum cleanup

Batch operations that modify large portions of indexed 
data

Frequent index rebuilds during peak hours

The impact of bloat can be severe4query performance can 
degrade by 2-10x, and disk space usage may increase 
dramatically. In extreme cases, indexes might consume 5x 
more space than necessary, leading to increased I/O and 
reduced cache efficiency.

Maintenance Operations

VACUUM reclaims space and updates statistics but doesn't 
rebuild the index. It's run automatically by autovacuum but 
can be manually triggered.

For optimal autovacuum settings, consider:

Adjusting autovacuum_vacuum_scale_factor (default: 
0.2)

Lowering autovacuum_vacuum_threshold for frequently 
updated tables

Setting table-specific autovacuum parameters

REINDEX completely rebuilds a bloated index, which locks 
the table for writes but produces optimally structured 
indexes. For production systems, consider CREATE INDEX 
CONCURRENTLY followed by dropping the old index.

Alternative maintenance approaches:

Regular index rotation (create new ³ switch ³ drop old)

Scheduled maintenance windows for full REINDEX 
operations

Using pg_repack extension for online table and index 
reorganization

Monitor bloat with the pg_stat_user_indexes view and 
specialized extensions like pgstattuple. The bloat_check.sql 
script from check_postgres is also useful for identifying 
problematic indexes.



Monitoring Index Usage
pg_stat_user_indexes View

This system view tracks detailed statistics about how often 
each index is used in scans, providing essential data for 
identifying both unused and heavily used indexes. Key 
columns include idx_scan (number of index scans initiated), 
idx_tup_read (number of index entries returned), and 
idx_tup_fetch (number of live table rows fetched by index).

pg_indexes_size Function

This function returns the total disk space used by indexes on 
a specified table. Combined with usage statistics, it helps 
identify indexes that consume significant space while 
providing little benefit. Large, unused indexes are prime 
candidates for removal.

The most valuable indexes typically show high ratios of idx_scan to sequential scans on their tables. Indexes with zero scans 
since the last database statistics reset are candidates for removal, although seasonal workloads should be considered before 
dropping indexes.



Real-World Index Optimization: Case Study #1

Initial Problem: E-
Commerce Search 
Slowdown
An online retailer was 
experiencing 3+ second 
response times for product 
searches as their catalog 
grew beyond 500,000 items. 
Customer complaints 
increased and cart 
abandonment rates rose by 
15%.

Analysis and 
Diagnosis
EXPLAIN ANALYZE revealed 
full sequential scans on the 
products table with costly 
sorts. The existing single-
column indexes weren't 
being used effectively for 
multi-faceted searches that 
combined categories, 
attributes, and text queries.

Implemented 
Solutions
1. Created a GIN index on the 
product_name and 
description using tsvector for 
text search

2. Added a multi-column B-
tree index on (category_id, 
brand_id, price)

3. Implemented a partial 
index for products where 
in_stock=true (90% of 
searches)

Results and Learnings
Search response time 
dropped from 3 seconds to 
25ms (120x improvement). 
Server CPU load decreased 
by 45% despite a 20% 
increase in traffic. Key 
learning: combined text 
search with attribute filtering 
required specialized indexes 
for each access pattern.



Real-World Index Optimization: Case Study #2
SaaS Analytics Platform Challenge

A B2B analytics platform stored client event data in a flexible 
JSONB column to accommodate varying event schemas 
across customers. As data volume grew to 50+ million 
events, dashboard loading times exceeded 30 seconds, 
making the product unusable for larger clients.

The core problem involved both flexible filtering (users could 
create custom reports based on any event attribute) and 
aggregation performance across these semi-structured 
JSON documents.

GIN Index Solution

The team implemented a comprehensive indexing strategy:

Created a GIN index on the entire JSONB field using 
jsonb_path_ops for containment queries

Added expression indexes on the most common key paths 
like ((data->>'event_type'))

Implemented a BRIN index on the event timestamp for 
time-range filtering

Added partial indexes for the most common report types

Query times dropped from 30+ seconds to under 200ms, 
eliminating full table scans entirely. The solution maintained 
schema flexibility while delivering performance comparable 
to a traditional normalized schema.



Indexes and Partitioned Tables

Partitioning Benefits
Partitioning splits large tables into manageable chunks by range, list, or hash values, improving performance 
through targeted scans and efficient partition pruning.

Index Creation Strategies
Indexes can be created on the parent table (propagating to all partitions) or individually on each partition4offering 
either consistency or partition-specific optimization.

Global vs. Local Indexes
PostgreSQL implements local indexes where each partition maintains its own index, enhancing write performance 
but requiring the planner to access multiple indexes when scanning across partitions.

Performance Considerations
For time-series data, index only recent partitions with frequent queries. Older, rarely-accessed partitions often 
benefit more from reduced storage than query speed.



Indexes and Foreign Data Wrappers (FDW)
How FDW Indexing Works

Foreign Data Wrappers allow PostgreSQL to access data 
stored in external systems like other databases, CSV files, or 
web services. Index usage with FDWs depends entirely on the 
specific wrapper's implementation.

The postgres_fdw (for remote PostgreSQL servers) supports 
the most advanced index features, allowing index information 
from the remote server to influence the local query planner.

Index Pushdown Capabilities

postgres_fdw: Full support for remote index usage with 
WHERE clause pushdown

mysql_fdw: Basic WHERE clause pushdown but limited 
index usage information

file_fdw: No index support (full file scan for every query)

mongodb_fdw: Partial support for index-based queries

When working with FDWs, EXPLAIN shows which conditions 
are "pushed down" to the remote server where they can 
utilize remote indexes. Conditions not pushed down are 
applied after data retrieval, usually resulting in poor 
performance.



Index Design for Write-Intensive Workloads

Write Performance Challenges
Each index on a table adds overhead to write 

operations (INSERT, UPDATE, DELETE). For write-
heavy applications like logging systems or IoT data 

collection, excessive indexing can create serious 
bottlenecks.

HOT (Heap-Only Tuple) Updates
PostgreSQL's HOT feature allows for more efficient 
updates when non-indexed columns change. By 
minimizing index modifications, HOT updates 
significantly improve write performance. Consider 
keeping frequently updated columns out of indexes 
when possible.

Strategic Partial Indexing
For write-heavy tables where queries target specific 

subsets of data, partial indexes can dramatically 
reduce write overhead while maintaining read 

performance for critical queries. Covering Indexes for Balance
When both read and write performance matter, 
covering indexes (INCLUDE clause) can provide a 
good compromise, supporting index-only scans for 
important queries while minimizing the number of 
separate indexes.



Automation: Index Advising Tools

pg_qualstats
This extension tracks the predicates used in WHERE clauses across your database, helping identify the most 
common filter conditions that would benefit from indexing. It maintains statistics on predicate usage frequency 
and selectivity, providing empirical data for index creation decisions.

When installed, pg_qualstats works passively in the background, collecting data on query patterns without 
impacting performance. The collected statistics can be analyzed through views like pg_qualstats_pretty, which 
ranks predicates by their occurrence and potential impact.

HypoPG
HypoPG allows you to create "hypothetical" indexes that don't actually exist but are visible to the query planner. 
This lets you test how different indexes would affect query plans without the overhead of creating real indexes, 
making it ideal for testing various indexing strategies in production-like environments.

Using functions like hypopg_create_index(), you can simulate an index and then run EXPLAIN to see how it would 
affect your queries. This provides valuable insights while avoiding the storage, maintenance, and write overhead 
of actual indexes during testing.

pgtune and pgindexadvisor
These purpose-built tools help optimize PostgreSQL configuration and indexing. pgtune provides hardware-
specific configuration recommendations, while pgindexadvisor analyzes query logs to suggest indexes that would 
optimize your most common or problematic queries based on actual workload patterns.

pgindexadvisor is particularly valuable for its ability to consider existing indexes and recommend consolidation 
where appropriate, potentially reducing the total number of indexes while improving performance.

pg_stat_statements + Auto_explain
When used together, these built-in modules form a powerful index recommendation system. pg_stat_statements 
tracks query performance statistics, while auto_explain logs execution plans for slow queries. By analyzing these 
logs, you can identify queries that would benefit most from better indexing.

This combination requires minimal setup and works with all PostgreSQL versions. The data gathered can be used 
with scripts or manual analysis to determine optimal indexing strategies based on your actual workload.

Cloud Advisors and Tools
Major cloud providers offer automated index recommendations for their PostgreSQL services. AWS Performance 
Insights, Azure Database Advisor, and Google Cloud SQL Insights can all suggest missing indexes based on 
workload analysis. Third-party tools like pganalyze and pgMustard provide similar capabilities with more detailed 
recommendations.

These cloud-based tools typically offer integration with monitoring dashboards and can provide ongoing 
recommendations as your workload changes. Many include impact analysis that estimates the potential 
performance improvement and storage costs of each suggested index.



Testing and Benchmarking Index Changes
Thorough testing is essential before implementing index changes in production environments to ensure they deliver the 
expected performance improvements without negative side effects.

1 pgBench for Load Testing
pgBench is PostgreSQL's built-in benchmarking tool, 
allowing you to simulate concurrent users and measure 
throughput.

Create custom scripts that mirror your actual 
workload patterns

Test with different concurrency levels (1, 10, 50, 
100) to identify bottlenecks

Compare performance before and after index 
changes using metrics like TPS

Run multiple iterations to ensure consistent results 
and identify outliers

Consider both read-only (-S) and read-write (-N) 
test scenarios

2 EXPLAIN Benchmarking
EXPLAIN ANALYZE provides detailed execution metrics 
for individual queries, revealing exactly how indexes are 
being utilized.

Capture baseline execution plans and times before 
making any changes

Compare execution plans to verify proper index 
usage and scan methods

Look for reduced cost estimates and actual 
execution times after changes

Pay attention to both planning time and execution 
time metrics

Use BUFFERS option to analyze I/O patterns and 
cache efficiency

3 Regression Testing
Index changes can sometimes harm performance for 
queries not considered in the initial analysis.

Maintain a comprehensive suite of common queries 
to test before deployment

Check both read and write performance impacts 
across your application

Verify that the query planner correctly chooses the 
new indexes

Watch for plan instability where the optimizer 
switches between plans

Monitor overall database size and backup/restore 
times after changes

4 Production Validation
Testing in production-like environments provides the 
most accurate performance assessment.

Use production data volumes or representative 
samples for realistic testing

Implement temporary indexes in non-peak hours to 
validate benefits

Consider A/B testing methodologies for critical 
applications

Monitor key application metrics beyond just 
database statistics

Establish clear rollback procedures before 
implementing changes

When evaluating test results, consider the complete picture including query latency, throughput, resource utilization, and 
application response times. Remember that perfect benchmark results don't always translate to real-world improvements if test 
conditions don't match actual usage patterns.



Troubleshooting Slow Queries
When PostgreSQL queries aren't performing as expected, check these common issues:

Type Mismatches
Implicit type conversions prevent 
index usage. Ensure column and 
parameter types match exactly. 
Watch for integer vs. varchar 
comparisons or timestamp vs. 
date issues.

Example: WHERE user_id = '1234' 
won't use an index if user_id is an 
integer column. Use WHERE 

user_id = 1234 instead.

Function Calls
Functions on indexed columns 
(like LOWER()) prevent standard 
index usage unless you have a 
matching functional index. Move 
functions to the right side of the 
equation when possible.

Example: Replace WHERE 

LOWER(email) = 

'user@example.com' with 
WHERE email = 

UPPER('user@example.com') or 
create a functional index with 
CREATE INDEX ON users 

(LOWER(email)).

OR Conditions
Multiple OR conditions often lead 
to index scans being abandoned. 
Consider UNION ALL queries 
instead, or ensure each OR clause 
has its own index.

Example: SELECT * FROM orders 

WHERE status = 'pending' OR 

customer_id = 1234 works better 
with separate indexes on both 
columns, or as two queries 
combined with UNION ALL.

Outdated Statistics
The query planner relies on table 
statistics to choose execution 
plans. Run ANALYZE after 
significant data changes to 
ensure optimal plan selection.

If plans suddenly change for the 
worse, check when statistics were 
last updated with SELECT 

relname, last_analyze FROM 

pg_stat_user_tables; and run 
manual ANALYZE on problematic 
tables.

Wrong Index Type
Using LIKE '%text%' with a B-tree 
index won't work efficiently. 
Match your index type to your 
query pattern (GIN for JSONB, 
GiST for full text, etc.).

For text search, consider creating 
a specialized index: CREATE 

INDEX ON documents USING 

gin(to_tsvector('english', 

content)); and use WHERE 

to_tsvector('english', content) 

@@ to_tsquery('search:*') for 
queries.

Inefficient WHERE 
Clauses
Non-selective WHERE conditions 
that filter out few rows can cause 
the planner to avoid indexes 
altogether. Ensure your most 
selective conditions come first in 
compound WHERE clauses.

Use EXPLAIN ANALYZE to check 
if your indexes are being used as 
expected and consider partial 
indexes for frequently filtered 
subsets of data.

Locking and Blocking
Concurrent transactions may cause queries to wait on locks, appearing as "slow queries" when they're actually blocked. 
Check for lock contention with pg_stat_activity and pg_locks views.

Consider optimizing transaction duration, adding appropriate indexes to reduce lock scope, or implementing row-level 
versioning strategies for highly concurrent workloads.

Remember to use EXPLAIN ANALYZE to diagnose specific query performance issues and identify which of these factors might 
be affecting your workload.



Indexing Best Practices: Summary & Next Steps

Analyze Your Workload
Identify your most frequent and expensive queries 
using pg_stat_statements and pg_stat_user_indexes. 
Focus on high-impact improvements rather than trying 
to optimize everything. Look for queries with high 
total_time, calls, and rows processed to prioritize your 
optimization efforts. Examine access patterns to 
determine which columns are frequently used in 
WHERE, JOIN, and ORDER BY clauses.

Implement Strategically
Choose the right index types for your specific query 
patterns. B-tree for equality and range conditions, Hash 
for exact equality, GIN for full-text and array searches, 
and BRIN for large tables with correlated physical and 
logical ordering. Consolidate indexes where possible, 
using multi-column indexes with careful column 
ordering. Use partial indexes for focused performance 
gains on frequently accessed subsets of data.

Measure & Validate
Test thoroughly before and after changes using 
EXPLAIN ANALYZE and benchmarking tools. Compare 
execution plans and actual timing statistics to verify 
improvements. Monitor both query performance and 
write overhead, especially during peak load periods. 
Document your findings to build a knowledge base of 
what works for your specific workloads. Use 
pg_stat_statements to track improvements over time 
with real workloads.

Maintain & Evolve
Schedule regular index reviews (monthly or quarterly) 
as your application evolves. Remove unused indexes 
identified with pg_stat_user_indexes to reduce write 
overhead and storage costs. Run REINDEX periodically 
on frequently updated tables to combat index bloat. 
Adjust your strategy as data volumes grow and query 
patterns change. Consider automation tools like 
pg_qualstats and hypopg for ongoing index 
recommendations.

To continue learning, explore the PostgreSQL documentation on indexing, particularly the chapters on index types and query 
planning. Community blogs like those by Percona, Cybertec, and pganalyze offer detailed case studies and advanced 
techniques. Attend PostgreSQL conferences or webinars where database experts share real-world optimization strategies that 
go beyond the basics.

Remember that indexing is both an art and a science4while these principles provide a foundation, every database has unique 
characteristics that may require specialized approaches. Balance query performance against write overhead, storage costs, and 
maintenance complexity. The ultimate goal is not to have the most indexes, but to have exactly the right indexes for your specific 
workload.

Consider setting up automated monitoring of index usage and query performance to catch regressions early. Tools like 
pg_stat_monitor, pgBadger, and commercial solutions can help identify changing patterns that might require index adjustments. 
Finally, keep in mind that indexing is just one part of database performance4query structure, server configuration, hardware 
resources, and application design all play critical roles in your overall PostgreSQL performance strategy.


