
How to Use PostgreSQL Log Files for
Troubleshooting Performance
Welcome to this comprehensive guide on leveraging PostgreSQL log files to diagnose and resolve performance issues.
Throughout this presentation, we'll explore how proper log configuration and analysis can transform your troubleshooting
process from guesswork to precision.

Introduction

My name is Shiv Iyer, Founder and CEO of MinervaDB. We
specialize in PostgreSQL optimization and performance
tuning for organizations of all sizes. With years of experience
diagnosing complex database issues, we've developed
systematic approaches to extract actionable insights from
PostgreSQL logs.

Presentation Topics

Understanding the Importance of PostgreSQL Logging1.

Types of PostgreSQL Log Files and Their Uses2.

Configuring PostgreSQL Logging Parameters for Optimal
Performance Analysis

3.

Analyzing Query Performance from Logs4.

Detecting Deadlocks and Lock Waits5.

Utilizing External Log Analysis Tools6.

Best Practices for Managing Log File Size and Retention7.

Troubleshooting with Logs: Real-World Examples8.

Contact Information

Contact: contact@minervadb.com | shiv@minervadb.com

Why PostgreSQL Logging Matters
Critical for Diagnosis

Log files provide the forensic evidence needed to diagnose
performance bottlenecks. They can help pinpoint unexpected
errors and lock contention issues that may not be apparent
through other monitoring tools. Detailed logs offer insights
into the sequence of events leading to an issue, which is
invaluable for root cause analysis.

Data-Driven Optimization

Rather than relying on intuition, logs enable precise,
evidence-based performance tuning. By revealing exactly
which queries, transactions, or connections are causing
problems, logs allow database administrators to make
informed decisions. This data-driven approach ensures that
optimization efforts are targeted and effective.

Compliance and Auditing

Well-configured logs create an audit trail of database activity essential for security compliance, governance requirements, and
post-incident investigations. These logs provide a record of who accessed what data and when, facilitating compliance with
regulations. This is essential for maintaining data integrity and accountability.

Types of PostgreSQL Log Files

Error Logs
Capture system-level errors, warnings, and fatal issues
that indicate problems with the PostgreSQL server itself.
These logs are essential for identifying hardware failures,
software bugs, or configuration mistakes.

Query Logs
Contain SQL statements executed against the database,
along with their execution durations. These logs are
invaluable for performance tuning, allowing administrators
to identify slow-running queries and optimize them for
improved performance.

Connection Logs
Record session starts and ends, as well as authentication
events. These logs are crucial for tracking user activity,
identifying connection issues, and auditing access to the
database.

Security Logs
Security logs monitor access attempts, privilege
escalations, and other security-related events. These logs
are critical for identifying potential security breaches and
ensuring compliance with security policies and
regulations.

Each log type serves a specific diagnostic purpose. Error logs help identify system-level issues, while query logs focus on
performance optimization opportunities. Connection logs help track user activity patterns and authentication problems. Security
logs provide crucial insights into database access and potential security threats.

For a deeper dive into log types and their configurations, visit our detailed guide: PostgreSQL Logging Basics

Where PostgreSQL Logs Are Stored?

1Default Location
By default, PostgreSQL sends logs to the standard

error stream (stderr), which typically appears in the
database server console or is captured by the

service manager. This is useful for initial debugging
or when a full logging setup isn't necessary. To view
these logs, you'll usually need to access the server

directly or check the system's service management
logs.

2 Enabling File Logging
The logging_collector parameter must be set to 'on'
to capture logs to actual files instead of stderr. This
requires a server restart to take effect. After
enabling, ensure the PostgreSQL process has write
permissions to the log directory. Consider the
implications for log rotation and disk space.

3Common File Locations
Most installations store logs in

/var/log/postgresql/ on Linux systems,
%PROGRAMDATA%\PostgreSQL\log\ on Windows,

or within the cluster's data directory in a 'pg_log'
subdirectory. Check these locations regularly and set

up automated scripts to monitor log file sizes.
Ensure proper permissions are set to prevent

unauthorized access.

Key Logging Parameters
Parameter Purpose Common Values

logging_collector Enables file-based logging on, off

log_destination Output format and target stderr, csvlog, jsonlog, syslog

log_filename Naming pattern for log files postgresql-%Y-%m-
%d_%H%M%S.log

log_rotation_age Time-based rotation interval 1d, 1h

log_rotation_size Size-based rotation threshold 10MB, 1GB

Properly configuring these parameters is essential for maintaining useful logs without overwhelming storage resources. For a
comprehensive parameter reference, see our Complete Postgres Logging Guide.

https://minervadb.xyz/configure-postgresql-logs-for-troubleshooting/

Tuning Log Verbosity
Log Verbosity Modes
PostgreSQL offers different log verbosity modes to control the amount of detail recorded in the logs. Choose the mode that best
suits your troubleshooting needs:

1
TERSE Mode
Records minimal detail, focusing on basic error messages only. Useful for high-level monitoring.

2
DEFAULT Mode
Provides a standard level of detail, suitable for general monitoring and
troubleshooting. This is the recommended setting for most systems.

3

VERBOSE Mode
Records maximum detail, including context information like
SQLSTATE error codes and source code locations. Use this
mode for in-depth debugging.

Controlling Message Severity
The log_min_messages parameter filters messages based on their severity level. It ranges from DEBUG5 (most verbose) to
PANIC (most severe). For performance troubleshooting, setting it to ERROR or WARNING typically provides sufficient detail
without generating excessive log noise. Adjust this parameter to focus on critical issues impacting database performance.

Context Included with Each Message
The log_error_verbosity parameter determines the amount of context included with each log message. During active
debugging, VERBOSE mode provides the most comprehensive context, including SQLSTATE error codes and source code
locations, aiding in issue diagnosis. However, DEFAULT mode is often sufficient for routine monitoring, balancing detail and log
size. Consider temporarily enabling VERBOSE mode when investigating specific issues, then revert to DEFAULT for normal
operations.

Performance Impact
Increasing log verbosity can impact performance due to the increased overhead of writing more data to log files. It's crucial to
strike a balance between capturing enough detail for effective troubleshooting and minimizing the performance impact of
logging. Regularly monitor log file sizes and system performance when adjusting these parameters to ensure optimal database
operation.

Logging Slow Queries

Configure Threshold
Set the log_min_duration_statement parameter to
define the minimum execution time for queries to be
logged. This parameter allows you to specify a
threshold in milliseconds. Queries that execute longer
than this threshold will be logged, allowing you to
identify performance bottlenecks.

Capture Execution
The system logs all queries that exceed the configured
threshold, capturing valuable performance data.
Capturing these queries provides insights into which
operations are consuming the most resources and
impacting overall database performance. This data is
crucial for identifying areas that require optimization.

Analyze Patterns
Examine the logs to identify patterns and recurring
slow queries that require attention. By analyzing these
patterns, you can pinpoint specific queries or database
operations that consistently exhibit slow performance.
This analysis can lead to targeted optimization efforts
and improved overall system efficiency.

Optimize
Improve the performance of identified slow queries
through indexing, query rewriting, or other optimization
techniques. Optimization techniques include adding
indexes to frequently queried columns, rewriting
inefficient queries to use more optimal execution plans,
and adjusting database configuration parameters to
better suit the workload. Effective optimization can
significantly reduce query execution times and improve
overall database performance.

The log_min_duration_statement parameter is crucial for performance troubleshooting. By setting it to a specific millisecond
value (e.g., 100, 500, 1000), you instruct PostgreSQL to log all queries whose execution time exceeds that duration, providing a
focused list for optimization efforts. A lower value will capture more queries but can lead to larger log files. Conversely, a higher
value will reduce log file size but may miss some slow queries. Experimentation and monitoring are key to finding the right
balance.

Exercise caution when setting this value too low in high-volume production environments, as excessive logging can introduce a
performance bottleneck. Monitor log file sizes and system performance to maintain optimal database operation. Regularly
review your logging configuration to ensure it aligns with your performance troubleshooting needs without negatively impacting
system performance. Consider implementing log rotation and archiving strategies to manage log file sizes effectively.

Example: Enabling Slow Query Logging

postgresql.conf example for production slow query logging:

Log queries running longer than 2 seconds
log_min_duration_statement = 2000

Enable logging of statement duration
log_duration = on

Recommended log format for easier parsing
log_line_prefix = '%t [%p]: user=%u,db=%d '

Enable auto_explain extension for automatic query plan logging
shared_preload_libraries = 'auto_explain'

Auto explain configuration
auto_explain.log_min_duration = 2000 # aligned with log_min_duration_statement
auto_explain.log_analyze = true
auto_explain.log_verbose = true
auto_explain.log_format = json

Apply changes with:
SELECT pg_reload_conf(); # or restart for shared_preload_libraries changes

Once configured, slow queries and their execution plans will appear in logs. Example:

2023-11-01 15:32:47.123 UTC [12345]: user=app_user,db=production LOG: duration: 2345.678 ms statement: SELECT *
FROM orders o JOIN customers c ON o.customer_id = c.id WHERE c.signup_date < '2023-01-01' AND o.total_amount > 100;

2023-11-01 15:32:47.124 UTC [12345]: user=app_user,db=production LOG: QUERY PLAN: [JSON formatted query plan from
auto_explain]

Analyzing Query Performance from Logs
What to Look For

Recurring slow queries from the same source IP or
application

Patterns in execution time variations correlated with
specific SQL functions or operators

Queries that consistently exhibit slow performance
versus intermittent slowdowns due to resource
contention

Correlation with peak time of day or specific background
workload patterns (e.g., backups)

Sequential scans on large tables lacking appropriate
indexes; identify missing index candidates

Analysis Techniques

Aggregate similar queries (normalized by removing literal
values) to identify query hotspots and common
performance bottlenecks

Correlate slow queries with system resource metrics
(CPU, memory, I/O) using tools like pg_stats and system
monitoring dashboards

Track queries across related transactions using
transaction IDs to identify multi-query performance
issues

Compare query execution plans before and after
optimization attempts (e.g., index creation, query
rewriting) to validate improvements

Use specialized log analysis tools (e.g., pgbadger,
pgMonitor) for visualization and automated anomaly
detection

For detailed query performance analysis strategies, see our guide: PostgreSQL Query Performance Analysis

https://www.example.com/

Detecting Deadlocks and Lock Waits

1Enable Lock Logging
Set log_lock_waits = on in postgresql.conf. This

setting ensures that PostgreSQL logs details when a
session waits longer than deadlock_timeout

(default: 1s) to acquire a lock, aiding in identifying
lock contention issues.

2 Examine Log Output
PostgreSQL logs include details about the blocking
and waiting processes, such as process IDs (PIDs),
queries involved, lock types (e.g., ACCESS SHARE,
ROW EXCLUSIVE), and the resources being
contended.3Identify Contention Patterns

Analyze logs for recurring lock contention patterns
by aggregating related events. Focus on problematic
tables or application behaviors that frequently cause
blocking. Use transaction IDs (xid) to trace lock waits

across multiple queries within a transaction.
4 Implement Mitigation Strategies

Restructure transactions to minimize lock duration,
add targeted indexes to reduce contention, and
refactor application logic to avoid long-held locks.
Consider using advisory locks for application-level
concurrency control.

Using External Log Analysis Tools
Leverage specialized tools for in-depth PostgreSQL log analysis, providing insights into performance bottlenecks and system
behavior:

pgBadger

Generates detailed HTML reports with query performance
metrics, error distributions, and connection statistics.
Efficiently parses large log files and supports all PostgreSQL
log formats. It offers features like slow query analysis,
autovacuum monitoring, and identification of the most
resource-intensive operations. pgBadger is a powerful tool
for understanding your PostgreSQL server's performance
and identifying areas for optimization.

ELK Stack (Elasticsearch, Logstash, Kibana)

Provides centralized log aggregation, indexing, and
visualization for enterprise environments. Enables correlation
of logs across multiple database instances for comprehensive
analysis. Elasticsearch provides scalable search and
analytics, Logstash handles log ingestion and parsing, and
Kibana offers interactive dashboards for visualizing log data.
The ELK stack is ideal for large-scale deployments requiring
real-time monitoring and alerting.

Grafana + Loki

Offers a modern log aggregation and visualization platform with tight integration with system metrics. Facilitates real-time
monitoring and alerting based on log patterns and anomalies. Loki is a horizontally scalable, highly available, multi-tenant log
aggregation system inspired by Prometheus. Grafana provides rich dashboards and alerting capabilities, allowing you to
correlate logs with other system metrics for comprehensive troubleshooting.

Learn more about automating log analysis in our guide: Automating Postgres Log Analysis

Managing Log File Size and Retention

1 Size-Based Rotation
Set log_rotation_size to automatically create new log
files when the current file reaches a specified size (e.g.,
100MB). This prevents individual log files from growing
unmanageably large. The server checks the log file size
after each new log message, and performs a rotation if
the size exceeds the configured value. This helps in
managing disk space and makes it easier to analyze
specific time frames.

2 Time-Based Rotation
Use log_rotation_age to rotate logs based on elapsed
time (e.g., 1d for daily rotation). This creates predictable
log file boundaries that align with operational time
periods. It is useful for organizing logs by day, week, or
month, which can simplify auditing and troubleshooting
efforts. When this parameter is set, the PostgreSQL
server checks the log file's age each time a new log
message is written.

3 File Management
Enable log_truncate_on_rotation to automatically
overwrite old log files in a cyclical pattern, maintaining
a fixed number of historical logs without manual
cleanup. When this setting is enabled, the server
truncates the existing log file instead of appending to it.
This is commonly used in conjunction with time-based
or size-based rotation to manage log file sizes and
prevent disk space exhaustion.

4 Retention Policies
Implement external retention scripts to archive or
purge logs beyond your required retention period,
balancing troubleshooting needs with storage
constraints. These scripts can automatically move older
logs to cheaper storage or completely remove them. It
is crucial to define a retention policy that meets both
compliance requirements and operational needs.

Best Practices for Log Storage

Storage Performance
Store PostgreSQL logs on disks
separate from your database files to
prevent log writes from competing
with database I/O. This separation
ensures that logging activities do
not degrade the performance of
critical database operations. SSDs
are highly recommended for high-
volume logging environments to
minimize the impact on overall
system responsiveness and reduce
latency.

Security Considerations
Restrict log file permissions to
database administrators only
(typically 0600 or 0640) as logs
may contain sensitive query
information, including values from
INSERT statements if full query
logging is enabled. Regularly audit
access to these logs to ensure
compliance with security policies.
Consider encrypting log files at rest
to further protect sensitive data.

Archiving Strategy
Implement automated processes to
compress and archive older logs to
cold storage, such as cloud-based
object storage or network-attached
storage (NAS), while maintaining
recent logs on faster storage for
immediate analysis. Employ log
shipping to a centralized logging
infrastructure to facilitate easier
querying, monitoring, and alerting
across multiple PostgreSQL
instances. Ensure that your
archiving strategy complies with
data retention requirements and
regulations.

Common Logging Pitfalls

1 Excessive Verbosity
Overly detailed logging, especially with debug levels
enabled, can significantly degrade performance and
create overwhelming data volumes, obscuring critical
insights. Use DEBUG levels judiciously for targeted
troubleshooting.

Ensure your logging configuration aligns with
monitoring goals, avoiding redundant data capture.
Regularly review and adjust logging levels for optimal
performance.

2 Insufficient Detail
Conversely, inadequate logging deprives
troubleshooters of the necessary context for
diagnosing complex issues. Balance is crucial: capture
enough data to be useful without overwhelming the
system.

Implement logging for key events, transactions, and
user actions to create a comprehensive audit trail. Aim
for detail that enables root cause analysis without
excessive data volume.

3 Neglecting Log Rotation
Failure to implement proper log rotation can exhaust
disk space, potentially causing database outages when
the disk fills. Always configure size and time-based
rotation with appropriate retention policies.

Automate log rotation frequently to prevent disk space
issues, and set up alerts for when disk usage nears
critical levels. Use compression to minimize storage
while preserving data integrity.

4 Missing Correlation Context
Without application-specific identifiers in queries (e.g.,
comment tags), linking database activity to application
events becomes challenging. Add context via query
comments for easier troubleshooting.

Embed unique transaction IDs, user IDs, or session
identifiers in query comments to connect database
operations with originating application logic. Ensure
consistent identifier application across all relevant
database interactions.

Performance Impact: Logging Overhead

5-15%
I/O Overhead

Detailed logging can increase disk I/O by 5-15% on active
systems. CSV logging has the greatest impact due to its

structured format.

<1ms
Per-Query Cost

Each logged statement adds under 1ms of overhead. This cost
accumulates with high query volumes.

2-3x
Log Size Growth

Full statement logging can increase log size by 2-3x,
compared to logging only errors, affecting storage.

24h
Retention Balance

Most performance issues can be diagnosed using 24 hours of
detailed logs, allowing for efficient rotation policies.

Real-World Example: Troubleshooting with Logs

1Problem Identification
A financial application experienced intermittent

slowdowns each afternoon between 2:00 PM and
3:00 PM. Users reported transaction delays

exceeding 5 seconds for balance inquiries and
transaction postings. System monitoring indicated

no resource saturation; CPU, memory, and I/O
metrics remained within normal ranges. The

preliminary investigation suggested a bottleneck
related to end-of-day reporting.

2 Logging Configuration
To isolate the root cause, we enabled
log_min_duration_statement = 1000 in PostgreSQL
to capture queries exceeding 1 second. This helped
identify slow-running SQL statements. We also
enabled log_lock_waits = on to detect potential lock
contention contributing to performance degradation.
log_statement='all' was briefly enabled but quickly
disabled due to excessive log generation.

3Log Analysis
Using pgBadger, a PostgreSQL log analyzer, on 24

hours of logs, we discovered a specific reporting
query executing daily at 2:00 PM. This query,

designed to generate daily transaction summaries,
triggered full table scans on large transactional

tables, which blocked OLTP operations. These table
scans locked significant database portions, causing

the observed slowdowns.

4 Solution Implementation
To eliminate the bottleneck, we created a
materialized view to pre-compute data for the
reporting query. This view was refreshed during off-
peak hours (midnight) to minimize the impact on
production. The reporting query was modified to
utilize the materialized view, avoiding scans of live
transactional tables. This change resolved the
slowdown during peak hours without altering report
output or functionality, improving application
performance and user experience.

Integrating Logs with Monitoring
Integrating PostgreSQL logs with system monitoring enhances observability. Combining log events with system metrics (CPU,
memory, I/O) and application telemetry offers comprehensive context for troubleshooting. Each integration type varies in
complexity and value.

Integration Type Implementation Complexity (1-10) Troubleshooting Value (1-10)

Basic File Collection 2 4

Centralized Logging 5 7

Real-time Analysis 7 8

Alerts Integration 6 9

AI-Powered Analysis 8 10

1
Basic File Collection
Basic File Collection: The simplest log integration, periodically collecting log files. Implementation is easy with
scripts, but real-time analysis is limited, requiring manual data sifting.

2
Centralized Logging
Centralized Logging: Uses a dedicated logging server (e.g., rsyslog, Fluentd) for PostgreSQL logs, improving
searchability and aggregation, but lacking real-time insights. Implementation involves configuring PostgreSQL to
forward logs. It enhances log management across servers but lacks immediate alerting.

3
Real-time Analysis
Real-time Analysis: Processes logs in real-time with tools like Elasticsearch or Splunk, enabling immediate
detection of anomalies. It requires a pipeline to ingest and index log data, offering proactive issue detection and
faster root cause analysis, but demands specialized expertise.

4
Alerts Integration
Alerts Integration: Extends real-time analysis by setting up alerts for specific log patterns, notifying operations
teams for immediate action, minimizing downtime. Setting up alerts involves defining rules and notification
channels, ensuring timely responses to critical issues.

5
AI-Powered Analysis
AI-Powered Analysis: Employs machine learning to automatically identify anomalies and predict issues,
detecting subtle patterns for advanced insights. It requires integrating machine learning models with the logging
pipeline, significantly improving troubleshooting efficiency but demanding data science expertise.

Internal Resources & Advanced Techniques
For deeper insights into advanced PostgreSQL troubleshooting techniques, explore our comprehensive guide: Comprehensive
Postgres Troubleshooting

Advanced users should also consider exploring custom log processing with pg_stat_statements, integrating with time-series
databases for long-term analysis, and implementing automated anomaly detection to proactively identify performance issues
before they impact users.

Custom Log Processing with
pg_stat_statements:

This extension tracks SQL execution
statistics. By enabling it and querying
its views, you can identify frequently
executed and slow queries. This
enables targeted optimization efforts,
reducing overall database load.

Integrating with Time-Series
Databases:

Time-series databases like
TimescaleDB or InfluxDB are optimized
for storing and analyzing data points
indexed in time order. Integrating
PostgreSQL logs with these databases
facilitates long-term trend analysis,
capacity planning, and identifying
performance regressions over time.

Automated Anomaly
Detection:

Implementing automated anomaly
detection involves setting up
algorithms to monitor log patterns and
detect deviations from normal
behavior. Tools like Anodot or custom
scripts can be used to analyze log data
in real-time, triggering alerts when
anomalies are detected. This helps in
proactively addressing performance
issues and preventing potential
outages.

https://minervadb.xyz/postgresql-performance-audit/
https://minervadb.xyz/postgresql-performance-audit/

Contact MinervaDB for PostgreSQL Expertise
Our Services

PostgreSQL Health Checks & Performance Audits:
Comprehensive assessments to identify bottlenecks and
areas for improvement in your PostgreSQL environment.

Database Architecture Design & Optimization: Crafting
efficient and scalable database architectures tailored to
your specific business needs, ensuring optimal
performance and resource utilization.

24/7 Production Support & Incident Response: Round-
the-clock support to address critical issues and minimize
downtime, ensuring business continuity.

Customized Monitoring Solutions: Tailored monitoring
setups to proactively detect and alert on performance
anomalies, providing real-time insights into your database
health.

Migration Planning & Implementation: Seamlessly
migrate your databases with minimal disruption,
leveraging our expertise to ensure a smooth transition.

Team Training & Knowledge Transfer: Empower your
team with the knowledge and skills to effectively manage
and optimize your PostgreSQL databases.

Our Expertise

MinervaDB boasts a team of seasoned PostgreSQL experts
with decades of experience in database administration,
performance tuning, and troubleshooting. Our deep
understanding of PostgreSQL internals enables us to deliver
unparalleled solutions and support.

Contact Information

General Inquiries:
contact@minervadb.com

Shiv Iyer
Founder & CEO
shiv@minervadb.com

Website:
minervadb.xyz/blog/

Commitment to Excellence

At MinervaDB, we are committed to providing comprehensive
PostgreSQL solutions that meet the evolving needs of our
clients. Our focus on innovation and continuous improvement
ensures that you receive the highest quality services and
support.

https://gamma.app/docs/minervadb.xyz/blog/

Conclusion & Next Steps

Assess Your Logging Configuration
Evaluate your current PostgreSQL logging setup against
the recommended practices. Pinpoint any areas where
your existing strategy might be less effective for
troubleshooting. Check whether your logging levels are
appropriately set to capture necessary information
without overwhelming the system with excessive data.
Review your log rotation policies to ensure logs are
managed efficiently.

Automate Log Analysis
Implement pgBadger or a similar tool to generate daily
reports from your database logs. Build a dashboard to
visualize slow query trends over time for proactive
monitoring. Automate the process to quickly identify
performance bottlenecks and optimize query
performance. Set up alerts for unexpected spikes in slow
queries or error rates.

Integrate Logs with Monitoring
Link your PostgreSQL logs to your current monitoring
system. This allows you to correlate database events with
broader system metrics and application performance data
for comprehensive insights. This integration provides a
holistic view of system health, allowing you to correlate
database events with application performance. Use tools
like Prometheus or Grafana to build comprehensive
dashboards.

Engage PostgreSQL Experts
For complicated setups or ongoing problems, reach out to
MinervaDB for specialized guidance on PostgreSQL
performance optimization. Delve into our comprehensive
resources at the MinervaDB Blog. Benefit from our team
of seasoned PostgreSQL experts with decades of
experience in database administration and performance
tuning. Contact us for customized solutions tailored to
your business needs.

https://minervadb.xyz/blog/

